LCOV - code coverage report
Current view: top level - media/libtheora/lib - state.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 461 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 31 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /********************************************************************
       2             :  *                                                                  *
       3             :  * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
       4             :  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
       5             :  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
       6             :  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
       7             :  *                                                                  *
       8             :  * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009                *
       9             :  * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
      10             :  *                                                                  *
      11             :  ********************************************************************
      12             : 
      13             :   function:
      14             :     last mod: $Id: state.c 17576 2010-10-29 01:07:51Z tterribe $
      15             : 
      16             :  ********************************************************************/
      17             : 
      18             : #include <stdlib.h>
      19             : #include <string.h>
      20             : #include "state.h"
      21             : #if defined(OC_DUMP_IMAGES)
      22             : # include <stdio.h>
      23             : # include "png.h"
      24             : #endif
      25             : 
      26             : /*The function used to fill in the chroma plane motion vectors for a macro
      27             :    block when 4 different motion vectors are specified in the luma plane.
      28             :   This version is for use with chroma decimated in the X and Y directions
      29             :    (4:2:0).
      30             :   _cbmvs: The chroma block-level motion vectors to fill in.
      31             :   _lbmvs: The luma block-level motion vectors.*/
      32           0 : static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
      33             :   int dx;
      34             :   int dy;
      35           0 :   dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
      36           0 :    +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
      37           0 :   dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
      38           0 :    +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
      39           0 :   _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
      40           0 : }
      41             : 
      42             : /*The function used to fill in the chroma plane motion vectors for a macro
      43             :    block when 4 different motion vectors are specified in the luma plane.
      44             :   This version is for use with chroma decimated in the Y direction.
      45             :   _cbmvs: The chroma block-level motion vectors to fill in.
      46             :   _lbmvs: The luma block-level motion vectors.*/
      47           0 : static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
      48             :   int dx;
      49             :   int dy;
      50           0 :   dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
      51           0 :   dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
      52           0 :   _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
      53           0 :   dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
      54           0 :   dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
      55           0 :   _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
      56           0 : }
      57             : 
      58             : /*The function used to fill in the chroma plane motion vectors for a macro
      59             :    block when 4 different motion vectors are specified in the luma plane.
      60             :   This version is for use with chroma decimated in the X direction (4:2:2).
      61             :   _cbmvs: The chroma block-level motion vectors to fill in.
      62             :   _lbmvs: The luma block-level motion vectors.*/
      63           0 : static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
      64             :   int dx;
      65             :   int dy;
      66           0 :   dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
      67           0 :   dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
      68           0 :   _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
      69           0 :   dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
      70           0 :   dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
      71           0 :   _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
      72           0 : }
      73             : 
      74             : /*The function used to fill in the chroma plane motion vectors for a macro
      75             :    block when 4 different motion vectors are specified in the luma plane.
      76             :   This version is for use with no chroma decimation (4:4:4).
      77             :   _cbmvs: The chroma block-level motion vectors to fill in.
      78             :   _lmbmv: The luma macro-block level motion vector to fill in for use in
      79             :            prediction.
      80             :   _lbmvs: The luma block-level motion vectors.*/
      81           0 : static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
      82           0 :   _cbmvs[0]=_lbmvs[0];
      83           0 :   _cbmvs[1]=_lbmvs[1];
      84           0 :   _cbmvs[2]=_lbmvs[2];
      85           0 :   _cbmvs[3]=_lbmvs[3];
      86           0 : }
      87             : 
      88             : /*A table of functions used to fill in the chroma plane motion vectors for a
      89             :    macro block when 4 different motion vectors are specified in the luma
      90             :    plane.*/
      91             : const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
      92             :   (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
      93             :   (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
      94             :   (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
      95             :   (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
      96             : };
      97             : 
      98             : 
      99             : 
     100             : /*Returns the fragment index of the top-left block in a macro block.
     101             :   This can be used to test whether or not the whole macro block is valid.
     102             :   _sb_map: The super block map.
     103             :   _quadi:  The quadrant number.
     104             :   Return: The index of the fragment of the upper left block in the macro
     105             :    block, or -1 if the block lies outside the coded frame.*/
     106           0 : static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
     107             :   /*It so happens that under the Hilbert curve ordering described below, the
     108             :      upper-left block in each macro block is at index 0, except in macro block
     109             :      3, where it is at index 2.*/
     110           0 :   return _sb_map[_quadi][_quadi&_quadi<<1];
     111             : }
     112             : 
     113             : /*Fills in the mapping from block positions to fragment numbers for a single
     114             :    color plane.
     115             :   This function also fills in the "valid" flag of each quadrant in the super
     116             :    block flags.
     117             :   _sb_maps:  The array of super block maps for the color plane.
     118             :   _sb_flags: The array of super block flags for the color plane.
     119             :   _frag0:    The index of the first fragment in the plane.
     120             :   _hfrags:   The number of horizontal fragments in a coded frame.
     121             :   _vfrags:   The number of vertical fragments in a coded frame.*/
     122           0 : static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
     123             :  oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
     124             :   /*Contains the (macro_block,block) indices for a 4x4 grid of
     125             :      fragments.
     126             :     The pattern is a 4x4 Hilbert space-filling curve.
     127             :     A Hilbert curve has the nice property that as the curve grows larger, its
     128             :      fractal dimension approaches 2.
     129             :     The intuition is that nearby blocks in the curve are also close spatially,
     130             :      with the previous element always an immediate neighbor, so that runs of
     131             :      blocks should be well correlated.*/
     132             :   static const int SB_MAP[4][4][2]={
     133             :     {{0,0},{0,1},{3,2},{3,3}},
     134             :     {{0,3},{0,2},{3,1},{3,0}},
     135             :     {{1,0},{1,3},{2,0},{2,3}},
     136             :     {{1,1},{1,2},{2,1},{2,2}}
     137             :   };
     138             :   ptrdiff_t  yfrag;
     139             :   unsigned   sbi;
     140             :   int        y;
     141           0 :   sbi=0;
     142           0 :   yfrag=_frag0;
     143           0 :   for(y=0;;y+=4){
     144             :     int imax;
     145             :     int x;
     146             :     /*Figure out how many columns of blocks in this super block lie within the
     147             :        image.*/
     148           0 :     imax=_vfrags-y;
     149           0 :     if(imax>4)imax=4;
     150           0 :     else if(imax<=0)break;
     151           0 :     for(x=0;;x+=4,sbi++){
     152             :       ptrdiff_t xfrag;
     153             :       int       jmax;
     154             :       int       quadi;
     155             :       int       i;
     156             :       /*Figure out how many rows of blocks in this super block lie within the
     157             :          image.*/
     158           0 :       jmax=_hfrags-x;
     159           0 :       if(jmax>4)jmax=4;
     160           0 :       else if(jmax<=0)break;
     161             :       /*By default, set all fragment indices to -1.*/
     162           0 :       memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
     163             :       /*Fill in the fragment map for this super block.*/
     164           0 :       xfrag=yfrag+x;
     165           0 :       for(i=0;i<imax;i++){
     166             :         int j;
     167           0 :         for(j=0;j<jmax;j++){
     168           0 :           _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
     169             :         }
     170           0 :         xfrag+=_hfrags;
     171             :       }
     172             :       /*Mark which quadrants of this super block lie within the image.*/
     173           0 :       for(quadi=0;quadi<4;quadi++){
     174           0 :         _sb_flags[sbi].quad_valid|=
     175           0 :          (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
     176             :       }
     177             :     }
     178           0 :     yfrag+=_hfrags<<2;
     179             :   }
     180           0 : }
     181             : 
     182             : /*Fills in the Y plane fragment map for a macro block given the fragment
     183             :    coordinates of its upper-left hand corner.
     184             :   _mb_map:    The macro block map to fill.
     185             :   _fplane: The description of the Y plane.
     186             :   _xfrag0: The X location of the upper-left hand fragment in the luma plane.
     187             :   _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
     188           0 : static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
     189             :  const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
     190             :   int i;
     191             :   int j;
     192           0 :   for(i=0;i<2;i++)for(j=0;j<2;j++){
     193           0 :     _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
     194             :   }
     195           0 : }
     196             : 
     197             : /*Fills in the chroma plane fragment maps for a macro block.
     198             :   This version is for use with chroma decimated in the X and Y directions
     199             :    (4:2:0).
     200             :   _mb_map:  The macro block map to fill.
     201             :   _fplanes: The descriptions of the fragment planes.
     202             :   _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
     203             :   _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
     204           0 : static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
     205             :  const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
     206             :   ptrdiff_t fragi;
     207           0 :   _xfrag0>>=1;
     208           0 :   _yfrag0>>=1;
     209           0 :   fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
     210           0 :   _mb_map[1][0]=fragi+_fplanes[1].froffset;
     211           0 :   _mb_map[2][0]=fragi+_fplanes[2].froffset;
     212           0 : }
     213             : 
     214             : /*Fills in the chroma plane fragment maps for a macro block.
     215             :   This version is for use with chroma decimated in the Y direction.
     216             :   _mb_map:  The macro block map to fill.
     217             :   _fplanes: The descriptions of the fragment planes.
     218             :   _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
     219             :   _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
     220           0 : static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
     221             :  const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
     222             :   ptrdiff_t fragi;
     223             :   int       j;
     224           0 :   _yfrag0>>=1;
     225           0 :   fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
     226           0 :   for(j=0;j<2;j++){
     227           0 :     _mb_map[1][j]=fragi+_fplanes[1].froffset;
     228           0 :     _mb_map[2][j]=fragi+_fplanes[2].froffset;
     229           0 :     fragi++;
     230             :   }
     231           0 : }
     232             : 
     233             : /*Fills in the chroma plane fragment maps for a macro block.
     234             :   This version is for use with chroma decimated in the X direction (4:2:2).
     235             :   _mb_map:  The macro block map to fill.
     236             :   _fplanes: The descriptions of the fragment planes.
     237             :   _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
     238             :   _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
     239           0 : static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
     240             :  const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
     241             :   ptrdiff_t fragi;
     242             :   int       i;
     243           0 :   _xfrag0>>=1;
     244           0 :   fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
     245           0 :   for(i=0;i<2;i++){
     246           0 :     _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
     247           0 :     _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
     248           0 :     fragi+=_fplanes[1].nhfrags;
     249             :   }
     250           0 : }
     251             : 
     252             : /*Fills in the chroma plane fragment maps for a macro block.
     253             :   This version is for use with no chroma decimation (4:4:4).
     254             :   This uses the already filled-in luma plane values.
     255             :   _mb_map:  The macro block map to fill.
     256             :   _fplanes: The descriptions of the fragment planes.*/
     257           0 : static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
     258             :  const oc_fragment_plane _fplanes[3]){
     259             :   int k;
     260           0 :   for(k=0;k<4;k++){
     261           0 :     _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
     262           0 :     _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
     263             :   }
     264           0 : }
     265             : 
     266             : /*The function type used to fill in the chroma plane fragment maps for a
     267             :    macro block.
     268             :   _mb_map:  The macro block map to fill.
     269             :   _fplanes: The descriptions of the fragment planes.
     270             :   _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
     271             :   _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
     272             : typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
     273             :  const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
     274             : 
     275             : /*A table of functions used to fill in the chroma plane fragment maps for a
     276             :    macro block for each type of chrominance decimation.*/
     277             : static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
     278             :   oc_mb_fill_cmapping00,
     279             :   oc_mb_fill_cmapping01,
     280             :   oc_mb_fill_cmapping10,
     281             :   (oc_mb_fill_cmapping_func)oc_mb_fill_cmapping11
     282             : };
     283             : 
     284             : /*Fills in the mapping from macro blocks to their corresponding fragment
     285             :    numbers in each plane.
     286             :   _mb_maps:   The list of macro block maps.
     287             :   _mb_modes:  The list of macro block modes; macro blocks completely outside
     288             :                the coded region are marked invalid.
     289             :   _fplanes:   The descriptions of the fragment planes.
     290             :   _pixel_fmt: The chroma decimation type.*/
     291           0 : static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
     292             :  signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
     293             :   oc_mb_fill_cmapping_func  mb_fill_cmapping;
     294             :   unsigned                  sbi;
     295             :   int                       y;
     296           0 :   mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
     297             :   /*Loop through the luma plane super blocks.*/
     298           0 :   for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
     299             :     int x;
     300           0 :     for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
     301             :       int ymb;
     302             :       /*Loop through the macro blocks in each super block in display order.*/
     303           0 :       for(ymb=0;ymb<2;ymb++){
     304             :         int xmb;
     305           0 :         for(xmb=0;xmb<2;xmb++){
     306             :           unsigned mbi;
     307             :           int      mbx;
     308             :           int      mby;
     309           0 :           mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
     310           0 :           mbx=x|xmb<<1;
     311           0 :           mby=y|ymb<<1;
     312             :           /*Initialize fragment indices to -1.*/
     313           0 :           memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
     314             :           /*Make sure this macro block is within the encoded region.*/
     315           0 :           if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
     316           0 :             _mb_modes[mbi]=OC_MODE_INVALID;
     317           0 :             continue;
     318             :           }
     319             :           /*Fill in the fragment indices for the luma plane.*/
     320           0 :           oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
     321             :           /*Fill in the fragment indices for the chroma planes.*/
     322           0 :           (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
     323             :         }
     324             :       }
     325             :     }
     326             :   }
     327           0 : }
     328             : 
     329             : /*Marks the fragments which fall all or partially outside the displayable
     330             :    region of the frame.
     331             :   _state: The Theora state containing the fragments to be marked.*/
     332           0 : static void oc_state_border_init(oc_theora_state *_state){
     333             :   oc_fragment       *frag;
     334             :   oc_fragment       *yfrag_end;
     335             :   oc_fragment       *xfrag_end;
     336             :   oc_fragment_plane *fplane;
     337             :   int                crop_x0;
     338             :   int                crop_y0;
     339             :   int                crop_xf;
     340             :   int                crop_yf;
     341             :   int                pli;
     342             :   int                y;
     343             :   int                x;
     344             :   /*The method we use here is slow, but the code is dead simple and handles
     345             :      all the special cases easily.
     346             :     We only ever need to do it once.*/
     347             :   /*Loop through the fragments, marking those completely outside the
     348             :      displayable region and constructing a border mask for those that straddle
     349             :      the border.*/
     350           0 :   _state->nborders=0;
     351           0 :   yfrag_end=frag=_state->frags;
     352           0 :   for(pli=0;pli<3;pli++){
     353           0 :     fplane=_state->fplanes+pli;
     354             :     /*Set up the cropping rectangle for this plane.*/
     355           0 :     crop_x0=_state->info.pic_x;
     356           0 :     crop_xf=_state->info.pic_x+_state->info.pic_width;
     357           0 :     crop_y0=_state->info.pic_y;
     358           0 :     crop_yf=_state->info.pic_y+_state->info.pic_height;
     359           0 :     if(pli>0){
     360           0 :       if(!(_state->info.pixel_fmt&1)){
     361           0 :         crop_x0=crop_x0>>1;
     362           0 :         crop_xf=crop_xf+1>>1;
     363             :       }
     364           0 :       if(!(_state->info.pixel_fmt&2)){
     365           0 :         crop_y0=crop_y0>>1;
     366           0 :         crop_yf=crop_yf+1>>1;
     367             :       }
     368             :     }
     369           0 :     y=0;
     370           0 :     for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
     371           0 :       x=0;
     372           0 :       for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
     373             :         /*First check to see if this fragment is completely outside the
     374             :            displayable region.*/
     375             :         /*Note the special checks for an empty cropping rectangle.
     376             :           This guarantees that if we count a fragment as straddling the
     377             :            border below, at least one pixel in the fragment will be inside
     378             :            the displayable region.*/
     379           0 :         if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
     380           0 :          crop_x0>=crop_xf||crop_y0>=crop_yf){
     381           0 :           frag->invalid=1;
     382             :         }
     383             :         /*Otherwise, check to see if it straddles the border.*/
     384           0 :         else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
     385           0 :          y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
     386             :           ogg_int64_t mask;
     387             :           int         npixels;
     388             :           int         i;
     389           0 :           mask=npixels=0;
     390           0 :           for(i=0;i<8;i++){
     391             :             int j;
     392           0 :             for(j=0;j<8;j++){
     393           0 :               if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
     394           0 :                 mask|=(ogg_int64_t)1<<(i<<3|j);
     395           0 :                 npixels++;
     396             :               }
     397             :             }
     398             :           }
     399             :           /*Search the fragment array for border info with the same pattern.
     400             :             In general, there will be at most 8 different patterns (per
     401             :              plane).*/
     402           0 :           for(i=0;;i++){
     403           0 :             if(i>=_state->nborders){
     404           0 :               _state->nborders++;
     405           0 :               _state->borders[i].mask=mask;
     406           0 :               _state->borders[i].npixels=npixels;
     407             :             }
     408           0 :             else if(_state->borders[i].mask!=mask)continue;
     409           0 :             frag->borderi=i;
     410           0 :             break;
     411             :           }
     412             :         }
     413           0 :         else frag->borderi=-1;
     414             :       }
     415             :     }
     416             :   }
     417           0 : }
     418             : 
     419           0 : static int oc_state_frarray_init(oc_theora_state *_state){
     420             :   int       yhfrags;
     421             :   int       yvfrags;
     422             :   int       chfrags;
     423             :   int       cvfrags;
     424             :   ptrdiff_t yfrags;
     425             :   ptrdiff_t cfrags;
     426             :   ptrdiff_t nfrags;
     427             :   unsigned  yhsbs;
     428             :   unsigned  yvsbs;
     429             :   unsigned  chsbs;
     430             :   unsigned  cvsbs;
     431             :   unsigned  ysbs;
     432             :   unsigned  csbs;
     433             :   unsigned  nsbs;
     434             :   size_t    nmbs;
     435             :   int       hdec;
     436             :   int       vdec;
     437             :   int       pli;
     438             :   /*Figure out the number of fragments in each plane.*/
     439             :   /*These parameters have already been validated to be multiples of 16.*/
     440           0 :   yhfrags=_state->info.frame_width>>3;
     441           0 :   yvfrags=_state->info.frame_height>>3;
     442           0 :   hdec=!(_state->info.pixel_fmt&1);
     443           0 :   vdec=!(_state->info.pixel_fmt&2);
     444           0 :   chfrags=yhfrags+hdec>>hdec;
     445           0 :   cvfrags=yvfrags+vdec>>vdec;
     446           0 :   yfrags=yhfrags*(ptrdiff_t)yvfrags;
     447           0 :   cfrags=chfrags*(ptrdiff_t)cvfrags;
     448           0 :   nfrags=yfrags+2*cfrags;
     449             :   /*Figure out the number of super blocks in each plane.*/
     450           0 :   yhsbs=yhfrags+3>>2;
     451           0 :   yvsbs=yvfrags+3>>2;
     452           0 :   chsbs=chfrags+3>>2;
     453           0 :   cvsbs=cvfrags+3>>2;
     454           0 :   ysbs=yhsbs*yvsbs;
     455           0 :   csbs=chsbs*cvsbs;
     456           0 :   nsbs=ysbs+2*csbs;
     457           0 :   nmbs=(size_t)ysbs<<2;
     458             :   /*Check for overflow.
     459             :     We support the ridiculous upper limits of the specification (1048560 by
     460             :      1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
     461             :      but for those with 32-bit pointers (or smaller!) we have to check.
     462             :     If the caller wants to prevent denial-of-service by imposing a more
     463             :      reasonable upper limit on the size of attempted allocations, they must do
     464             :      so themselves; we have no platform independent way to determine how much
     465             :      system memory there is nor an application-independent way to decide what a
     466             :      "reasonable" allocation is.*/
     467           0 :   if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
     468           0 :    ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
     469           0 :     return TH_EIMPL;
     470             :   }
     471             :   /*Initialize the fragment array.*/
     472           0 :   _state->fplanes[0].nhfrags=yhfrags;
     473           0 :   _state->fplanes[0].nvfrags=yvfrags;
     474           0 :   _state->fplanes[0].froffset=0;
     475           0 :   _state->fplanes[0].nfrags=yfrags;
     476           0 :   _state->fplanes[0].nhsbs=yhsbs;
     477           0 :   _state->fplanes[0].nvsbs=yvsbs;
     478           0 :   _state->fplanes[0].sboffset=0;
     479           0 :   _state->fplanes[0].nsbs=ysbs;
     480           0 :   _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
     481           0 :   _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
     482           0 :   _state->fplanes[1].froffset=yfrags;
     483           0 :   _state->fplanes[2].froffset=yfrags+cfrags;
     484           0 :   _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
     485           0 :   _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
     486           0 :   _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
     487           0 :   _state->fplanes[1].sboffset=ysbs;
     488           0 :   _state->fplanes[2].sboffset=ysbs+csbs;
     489           0 :   _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
     490           0 :   _state->nfrags=nfrags;
     491           0 :   _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
     492           0 :   _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
     493           0 :   _state->nsbs=nsbs;
     494           0 :   _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
     495           0 :   _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
     496           0 :   _state->nhmbs=yhsbs<<1;
     497           0 :   _state->nvmbs=yvsbs<<1;
     498           0 :   _state->nmbs=nmbs;
     499           0 :   _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
     500           0 :   _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
     501           0 :   _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
     502           0 :   if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
     503           0 :    _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
     504           0 :    _state->coded_fragis==NULL){
     505           0 :     return TH_EFAULT;
     506             :   }
     507             :   /*Create the mapping from super blocks to fragments.*/
     508           0 :   for(pli=0;pli<3;pli++){
     509             :     oc_fragment_plane *fplane;
     510           0 :     fplane=_state->fplanes+pli;
     511           0 :     oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
     512           0 :      _state->sb_flags+fplane->sboffset,fplane->froffset,
     513             :      fplane->nhfrags,fplane->nvfrags);
     514             :   }
     515             :   /*Create the mapping from macro blocks to fragments.*/
     516           0 :   oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
     517           0 :    _state->fplanes,_state->info.pixel_fmt);
     518             :   /*Initialize the invalid and borderi fields of each fragment.*/
     519           0 :   oc_state_border_init(_state);
     520           0 :   return 0;
     521             : }
     522             : 
     523           0 : static void oc_state_frarray_clear(oc_theora_state *_state){
     524           0 :   _ogg_free(_state->coded_fragis);
     525           0 :   _ogg_free(_state->mb_modes);
     526           0 :   _ogg_free(_state->mb_maps);
     527           0 :   _ogg_free(_state->sb_flags);
     528           0 :   _ogg_free(_state->sb_maps);
     529           0 :   _ogg_free(_state->frag_mvs);
     530           0 :   _ogg_free(_state->frags);
     531           0 : }
     532             : 
     533             : 
     534             : /*Initializes the buffers used for reconstructed frames.
     535             :   These buffers are padded with 16 extra pixels on each side, to allow
     536             :    unrestricted motion vectors without special casing the boundary.
     537             :   If chroma is decimated in either direction, the padding is reduced by a
     538             :    factor of 2 on the appropriate sides.
     539             :   _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
     540           0 : static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
     541             :   th_info       *info;
     542             :   unsigned char *ref_frame_data;
     543             :   size_t         ref_frame_data_sz;
     544             :   size_t         ref_frame_sz;
     545             :   size_t         yplane_sz;
     546             :   size_t         cplane_sz;
     547             :   int            yhstride;
     548             :   int            yheight;
     549             :   int            chstride;
     550             :   int            cheight;
     551             :   ptrdiff_t      align;
     552             :   ptrdiff_t      yoffset;
     553             :   ptrdiff_t      coffset;
     554             :   ptrdiff_t     *frag_buf_offs;
     555             :   ptrdiff_t      fragi;
     556             :   int            hdec;
     557             :   int            vdec;
     558             :   int            rfi;
     559             :   int            pli;
     560           0 :   if(_nrefs<3||_nrefs>6)return TH_EINVAL;
     561           0 :   info=&_state->info;
     562             :   /*Compute the image buffer parameters for each plane.*/
     563           0 :   hdec=!(info->pixel_fmt&1);
     564           0 :   vdec=!(info->pixel_fmt&2);
     565           0 :   yhstride=info->frame_width+2*OC_UMV_PADDING;
     566           0 :   yheight=info->frame_height+2*OC_UMV_PADDING;
     567             :   /*Require 16-byte aligned rows in the chroma planes.*/
     568           0 :   chstride=(yhstride>>hdec)+15&~15;
     569           0 :   cheight=yheight>>vdec;
     570           0 :   yplane_sz=yhstride*(size_t)yheight;
     571           0 :   cplane_sz=chstride*(size_t)cheight;
     572           0 :   yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
     573           0 :   coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
     574             :   /*Although we guarantee the rows of the chroma planes are a multiple of 16
     575             :      bytes, the initial padding on the first row may only be 8 bytes.
     576             :     Compute the offset needed to the actual image data to a multiple of 16.*/
     577           0 :   align=-coffset&15;
     578           0 :   ref_frame_sz=yplane_sz+2*cplane_sz+16;
     579           0 :   ref_frame_data_sz=_nrefs*ref_frame_sz;
     580             :   /*Check for overflow.
     581             :     The same caveats apply as for oc_state_frarray_init().*/
     582           0 :   if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
     583           0 :    ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
     584           0 :     return TH_EIMPL;
     585             :   }
     586           0 :   ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
     587           0 :   frag_buf_offs=_state->frag_buf_offs=
     588           0 :    _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
     589           0 :   if(ref_frame_data==NULL||frag_buf_offs==NULL){
     590           0 :     _ogg_free(frag_buf_offs);
     591           0 :     oc_aligned_free(ref_frame_data);
     592           0 :     return TH_EFAULT;
     593             :   }
     594             :   /*Set up the width, height and stride for the image buffers.*/
     595           0 :   _state->ref_frame_bufs[0][0].width=info->frame_width;
     596           0 :   _state->ref_frame_bufs[0][0].height=info->frame_height;
     597           0 :   _state->ref_frame_bufs[0][0].stride=yhstride;
     598           0 :   _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
     599           0 :    info->frame_width>>hdec;
     600           0 :   _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
     601           0 :    info->frame_height>>vdec;
     602           0 :   _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
     603             :    chstride;
     604           0 :   for(rfi=1;rfi<_nrefs;rfi++){
     605           0 :     memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
     606             :      sizeof(_state->ref_frame_bufs[0]));
     607             :   }
     608           0 :   _state->ref_frame_handle=ref_frame_data;
     609             :   /*Set up the data pointers for the image buffers.*/
     610           0 :   for(rfi=0;rfi<_nrefs;rfi++){
     611           0 :     _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
     612           0 :     ref_frame_data+=yplane_sz+align;
     613           0 :     _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
     614           0 :     ref_frame_data+=cplane_sz;
     615           0 :     _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
     616           0 :     ref_frame_data+=cplane_sz+(16-align);
     617             :     /*Flip the buffer upside down.
     618             :       This allows us to decode Theora's bottom-up frames in their natural
     619             :        order, yet return a top-down buffer with a positive stride to the user.*/
     620           0 :     oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
     621           0 :      _state->ref_frame_bufs[rfi]);
     622             :   }
     623           0 :   _state->ref_ystride[0]=-yhstride;
     624           0 :   _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
     625             :   /*Initialize the fragment buffer offsets.*/
     626           0 :   ref_frame_data=_state->ref_frame_bufs[0][0].data;
     627           0 :   fragi=0;
     628           0 :   for(pli=0;pli<3;pli++){
     629             :     th_img_plane      *iplane;
     630             :     oc_fragment_plane *fplane;
     631             :     unsigned char     *vpix;
     632             :     ptrdiff_t          stride;
     633             :     ptrdiff_t          vfragi_end;
     634             :     int                nhfrags;
     635           0 :     iplane=_state->ref_frame_bufs[0]+pli;
     636           0 :     fplane=_state->fplanes+pli;
     637           0 :     vpix=iplane->data;
     638           0 :     vfragi_end=fplane->froffset+fplane->nfrags;
     639           0 :     nhfrags=fplane->nhfrags;
     640           0 :     stride=iplane->stride;
     641           0 :     while(fragi<vfragi_end){
     642             :       ptrdiff_t      hfragi_end;
     643             :       unsigned char *hpix;
     644           0 :       hpix=vpix;
     645           0 :       for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
     646           0 :         frag_buf_offs[fragi]=hpix-ref_frame_data;
     647           0 :         hpix+=8;
     648             :       }
     649           0 :       vpix+=stride<<3;
     650             :     }
     651             :   }
     652             :   /*Initialize the reference frame pointers and indices.*/
     653           0 :   _state->ref_frame_idx[OC_FRAME_GOLD]=
     654           0 :    _state->ref_frame_idx[OC_FRAME_PREV]=
     655           0 :    _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
     656           0 :    _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
     657           0 :    _state->ref_frame_idx[OC_FRAME_SELF]=
     658           0 :    _state->ref_frame_idx[OC_FRAME_IO]=-1;
     659           0 :   _state->ref_frame_data[OC_FRAME_GOLD]=
     660           0 :    _state->ref_frame_data[OC_FRAME_PREV]=
     661           0 :    _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
     662           0 :    _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
     663           0 :    _state->ref_frame_data[OC_FRAME_SELF]=
     664           0 :    _state->ref_frame_data[OC_FRAME_IO]=NULL;
     665           0 :   return 0;
     666             : }
     667             : 
     668           0 : static void oc_state_ref_bufs_clear(oc_theora_state *_state){
     669           0 :   _ogg_free(_state->frag_buf_offs);
     670           0 :   oc_aligned_free(_state->ref_frame_handle);
     671           0 : }
     672             : 
     673             : 
     674           0 : void oc_state_accel_init_c(oc_theora_state *_state){
     675           0 :   _state->cpu_flags=0;
     676             : #if defined(OC_STATE_USE_VTABLE)
     677             :   _state->opt_vtable.frag_copy=oc_frag_copy_c;
     678             :   _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
     679             :   _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
     680             :   _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
     681             :   _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
     682             :   _state->opt_vtable.idct8x8=oc_idct8x8_c;
     683             :   _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
     684             :   _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
     685             :   _state->opt_vtable.state_loop_filter_frag_rows=
     686             :    oc_state_loop_filter_frag_rows_c;
     687             :   _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
     688             : #endif
     689           0 :   _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
     690           0 : }
     691             : 
     692             : 
     693           0 : int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
     694             :   int ret;
     695             :   /*First validate the parameters.*/
     696           0 :   if(_info==NULL)return TH_EFAULT;
     697             :   /*The width and height of the encoded frame must be multiples of 16.
     698             :     They must also, when divided by 16, fit into a 16-bit unsigned integer.
     699             :     The displayable frame offset coordinates must fit into an 8-bit unsigned
     700             :      integer.
     701             :     Note that the offset Y in the API is specified on the opposite side from
     702             :      how it is specified in the bitstream, because the Y axis is flipped in
     703             :      the bitstream.
     704             :     The displayable frame must fit inside the encoded frame.
     705             :     The color space must be one known by the encoder.*/
     706           0 :   if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
     707           0 :    _info->frame_width<=0||_info->frame_width>=0x100000||
     708           0 :    _info->frame_height<=0||_info->frame_height>=0x100000||
     709           0 :    _info->pic_x+_info->pic_width>_info->frame_width||
     710           0 :    _info->pic_y+_info->pic_height>_info->frame_height||
     711           0 :    _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
     712             :    /*Note: the following <0 comparisons may generate spurious warnings on
     713             :       platforms where enums are unsigned.
     714             :      We could cast them to unsigned and just use the following >= comparison,
     715             :       but there are a number of compilers which will mis-optimize this.
     716             :      It's better to live with the spurious warnings.*/
     717           0 :    _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
     718           0 :    _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS){
     719           0 :     return TH_EINVAL;
     720             :   }
     721           0 :   memset(_state,0,sizeof(*_state));
     722           0 :   memcpy(&_state->info,_info,sizeof(*_info));
     723             :   /*Invert the sense of pic_y to match Theora's right-handed coordinate
     724             :      system.*/
     725           0 :   _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
     726           0 :   _state->frame_type=OC_UNKWN_FRAME;
     727           0 :   oc_state_accel_init(_state);
     728           0 :   ret=oc_state_frarray_init(_state);
     729           0 :   if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
     730           0 :   if(ret<0){
     731           0 :     oc_state_frarray_clear(_state);
     732           0 :     return ret;
     733             :   }
     734             :   /*If the keyframe_granule_shift is out of range, use the maximum allowable
     735             :      value.*/
     736           0 :   if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
     737           0 :     _state->info.keyframe_granule_shift=31;
     738             :   }
     739           0 :   _state->keyframe_num=0;
     740           0 :   _state->curframe_num=-1;
     741             :   /*3.2.0 streams mark the frame index instead of the frame count.
     742             :     This was changed with stream version 3.2.1 to conform to other Ogg
     743             :      codecs.
     744             :     We add an extra bias when computing granule positions for new streams.*/
     745           0 :   _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
     746           0 :   return 0;
     747             : }
     748             : 
     749           0 : void oc_state_clear(oc_theora_state *_state){
     750           0 :   oc_state_ref_bufs_clear(_state);
     751           0 :   oc_state_frarray_clear(_state);
     752           0 : }
     753             : 
     754             : 
     755             : /*Duplicates the pixels on the border of the image plane out into the
     756             :    surrounding padding for use by unrestricted motion vectors.
     757             :   This function only adds the left and right borders, and only for the fragment
     758             :    rows specified.
     759             :   _refi: The index of the reference buffer to pad.
     760             :   _pli:  The color plane.
     761             :   _y0:   The Y coordinate of the first row to pad.
     762             :   _yend: The Y coordinate of the row to stop padding at.*/
     763           0 : void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
     764             :  int _y0,int _yend){
     765             :   th_img_plane  *iplane;
     766             :   unsigned char *apix;
     767             :   unsigned char *bpix;
     768             :   unsigned char *epix;
     769             :   int            stride;
     770             :   int            hpadding;
     771           0 :   hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
     772           0 :   iplane=_state->ref_frame_bufs[_refi]+_pli;
     773           0 :   stride=iplane->stride;
     774           0 :   apix=iplane->data+_y0*(ptrdiff_t)stride;
     775           0 :   bpix=apix+iplane->width-1;
     776           0 :   epix=iplane->data+_yend*(ptrdiff_t)stride;
     777             :   /*Note the use of != instead of <, which allows the stride to be negative.*/
     778           0 :   while(apix!=epix){
     779           0 :     memset(apix-hpadding,apix[0],hpadding);
     780           0 :     memset(bpix+1,bpix[0],hpadding);
     781           0 :     apix+=stride;
     782           0 :     bpix+=stride;
     783             :   }
     784           0 : }
     785             : 
     786             : /*Duplicates the pixels on the border of the image plane out into the
     787             :    surrounding padding for use by unrestricted motion vectors.
     788             :   This function only adds the top and bottom borders, and must be called after
     789             :    the left and right borders are added.
     790             :   _refi:      The index of the reference buffer to pad.
     791             :   _pli:       The color plane.*/
     792           0 : void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
     793             :   th_img_plane  *iplane;
     794             :   unsigned char *apix;
     795             :   unsigned char *bpix;
     796             :   unsigned char *epix;
     797             :   int            stride;
     798             :   int            hpadding;
     799             :   int            vpadding;
     800             :   int            fullw;
     801           0 :   hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
     802           0 :   vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
     803           0 :   iplane=_state->ref_frame_bufs[_refi]+_pli;
     804           0 :   stride=iplane->stride;
     805           0 :   fullw=iplane->width+(hpadding<<1);
     806           0 :   apix=iplane->data-hpadding;
     807           0 :   bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
     808           0 :   epix=apix-stride*(ptrdiff_t)vpadding;
     809           0 :   while(apix!=epix){
     810           0 :     memcpy(apix-stride,apix,fullw);
     811           0 :     memcpy(bpix+stride,bpix,fullw);
     812           0 :     apix-=stride;
     813           0 :     bpix+=stride;
     814             :   }
     815           0 : }
     816             : 
     817             : /*Duplicates the pixels on the border of the given reference image out into
     818             :    the surrounding padding for use by unrestricted motion vectors.
     819             :   _state: The context containing the reference buffers.
     820             :   _refi:  The index of the reference buffer to pad.*/
     821           0 : void oc_state_borders_fill(oc_theora_state *_state,int _refi){
     822             :   int pli;
     823           0 :   for(pli=0;pli<3;pli++){
     824           0 :     oc_state_borders_fill_rows(_state,_refi,pli,0,
     825             :      _state->ref_frame_bufs[_refi][pli].height);
     826           0 :     oc_state_borders_fill_caps(_state,_refi,pli);
     827             :   }
     828           0 : }
     829             : 
     830             : /*Determines the offsets in an image buffer to use for motion compensation.
     831             :   _state:   The Theora state the offsets are to be computed with.
     832             :   _offsets: Returns the offset for the buffer(s).
     833             :             _offsets[0] is always set.
     834             :             _offsets[1] is set if the motion vector has non-zero fractional
     835             :              components.
     836             :   _pli:     The color plane index.
     837             :   _mv:      The motion vector.
     838             :   Return: The number of offsets returned: 1 or 2.*/
     839           0 : int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
     840             :  int _pli,oc_mv _mv){
     841             :   /*Here is a brief description of how Theora handles motion vectors:
     842             :     Motion vector components are specified to half-pixel accuracy in
     843             :      undecimated directions of each plane, and quarter-pixel accuracy in
     844             :      decimated directions.
     845             :     Integer parts are extracted by dividing (not shifting) by the
     846             :      appropriate amount, with truncation towards zero.
     847             :     These integer values are used to calculate the first offset.
     848             : 
     849             :     If either of the fractional parts are non-zero, then a second offset is
     850             :      computed.
     851             :     No third or fourth offsets are computed, even if both components have
     852             :      non-zero fractional parts.
     853             :     The second offset is computed by dividing (not shifting) by the
     854             :      appropriate amount, always truncating _away_ from zero.*/
     855             : #if 0
     856             :   /*This version of the code doesn't use any tables, but is slower.*/
     857             :   int ystride;
     858             :   int xprec;
     859             :   int yprec;
     860             :   int xfrac;
     861             :   int yfrac;
     862             :   int offs;
     863             :   int dx;
     864             :   int dy;
     865             :   ystride=_state->ref_ystride[_pli];
     866             :   /*These two variables decide whether we are in half- or quarter-pixel
     867             :      precision in each component.*/
     868             :   xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
     869             :   yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
     870             :   dx=OC_MV_X(_mv);
     871             :   dy=OC_MV_Y(_mv);
     872             :   /*These two variables are either 0 if all the fractional bits are zero or -1
     873             :      if any of them are non-zero.*/
     874             :   xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
     875             :   yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
     876             :   offs=(dx>>xprec)+(dy>>yprec)*ystride;
     877             :   if(xfrac||yfrac){
     878             :     int xmask;
     879             :     int ymask;
     880             :     xmask=OC_SIGNMASK(dx);
     881             :     ymask=OC_SIGNMASK(dy);
     882             :     yfrac&=ystride;
     883             :     _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
     884             :     _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
     885             :     return 2;
     886             :   }
     887             :   else{
     888             :     _offsets[0]=offs;
     889             :     return 1;
     890             :   }
     891             : #else
     892             :   /*Using tables simplifies the code, and there's enough arithmetic to hide the
     893             :      latencies of the memory references.*/
     894             :   static const signed char OC_MVMAP[2][64]={
     895             :     {
     896             :           -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
     897             :        -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
     898             :         0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
     899             :         8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
     900             :     },
     901             :     {
     902             :            -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
     903             :        -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
     904             :         0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
     905             :         4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
     906             :     }
     907             :   };
     908             :   static const signed char OC_MVMAP2[2][64]={
     909             :     {
     910             :         -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
     911             :       0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
     912             :       0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
     913             :       0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
     914             :     },
     915             :     {
     916             :         -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
     917             :       0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
     918             :       0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
     919             :       0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
     920             :     }
     921             :   };
     922             :   int ystride;
     923             :   int qpx;
     924             :   int qpy;
     925             :   int mx;
     926             :   int my;
     927             :   int mx2;
     928             :   int my2;
     929             :   int offs;
     930             :   int dx;
     931             :   int dy;
     932           0 :   ystride=_state->ref_ystride[_pli];
     933           0 :   qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
     934           0 :   dx=OC_MV_X(_mv);
     935           0 :   dy=OC_MV_Y(_mv);
     936           0 :   my=OC_MVMAP[qpy][dy+31];
     937           0 :   my2=OC_MVMAP2[qpy][dy+31];
     938           0 :   qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
     939           0 :   mx=OC_MVMAP[qpx][dx+31];
     940           0 :   mx2=OC_MVMAP2[qpx][dx+31];
     941           0 :   offs=my*ystride+mx;
     942           0 :   if(mx2||my2){
     943           0 :     _offsets[1]=offs+my2*ystride+mx2;
     944           0 :     _offsets[0]=offs;
     945           0 :     return 2;
     946             :   }
     947           0 :   _offsets[0]=offs;
     948           0 :   return 1;
     949             : #endif
     950             : }
     951             : 
     952           0 : void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
     953             :  int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
     954             :   unsigned char *dst;
     955             :   ptrdiff_t      frag_buf_off;
     956             :   int            ystride;
     957             :   int            refi;
     958             :   /*Apply the inverse transform.*/
     959             :   /*Special case only having a DC component.*/
     960           0 :   if(_last_zzi<2){
     961             :     ogg_int16_t p;
     962             :     int         ci;
     963             :     /*We round this dequant product (and not any of the others) because there's
     964             :        no iDCT rounding.*/
     965           0 :     p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
     966             :     /*LOOP VECTORIZES.*/
     967           0 :     for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
     968             :   }
     969             :   else{
     970             :     /*First, dequantize the DC coefficient.*/
     971           0 :     _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
     972           0 :     oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
     973             :   }
     974             :   /*Fill in the target buffer.*/
     975           0 :   frag_buf_off=_state->frag_buf_offs[_fragi];
     976           0 :   refi=_state->frags[_fragi].refi;
     977           0 :   ystride=_state->ref_ystride[_pli];
     978           0 :   dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
     979           0 :   if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
     980             :   else{
     981             :     const unsigned char *ref;
     982             :     int                  mvoffsets[2];
     983           0 :     ref=_state->ref_frame_data[refi]+frag_buf_off;
     984           0 :     if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
     985           0 :      _state->frag_mvs[_fragi])>1){
     986           0 :       oc_frag_recon_inter2(_state,
     987             :        dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
     988             :     }
     989             :     else{
     990           0 :       oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
     991             :     }
     992             :   }
     993           0 : }
     994             : 
     995           0 : static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
     996             :   int y;
     997           0 :   _pix-=2;
     998           0 :   for(y=0;y<8;y++){
     999             :     int f;
    1000           0 :     f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
    1001             :     /*The _bv array is used to compute the function
    1002             :       f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
    1003             :       where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
    1004           0 :     f=*(_bv+(f+4>>3));
    1005           0 :     _pix[1]=OC_CLAMP255(_pix[1]+f);
    1006           0 :     _pix[2]=OC_CLAMP255(_pix[2]-f);
    1007           0 :     _pix+=_ystride;
    1008             :   }
    1009           0 : }
    1010             : 
    1011           0 : static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
    1012             :   int x;
    1013           0 :   _pix-=_ystride*2;
    1014           0 :   for(x=0;x<8;x++){
    1015             :     int f;
    1016           0 :     f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
    1017             :     /*The _bv array is used to compute the function
    1018             :       f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
    1019             :       where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
    1020           0 :     f=*(_bv+(f+4>>3));
    1021           0 :     _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
    1022           0 :     _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
    1023             :   }
    1024           0 : }
    1025             : 
    1026             : /*Initialize the bounding values array used by the loop filter.
    1027             :   _bv: Storage for the array.
    1028             :   _flimit: The filter limit as defined in Section 7.10 of the spec.*/
    1029           0 : void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
    1030             :   int i;
    1031           0 :   memset(_bv,0,sizeof(_bv[0])*256);
    1032           0 :   for(i=0;i<_flimit;i++){
    1033           0 :     if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
    1034           0 :     _bv[127-i]=(signed char)(-i);
    1035           0 :     _bv[127+i]=(signed char)(i);
    1036           0 :     if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
    1037             :   }
    1038           0 : }
    1039             : 
    1040             : /*Apply the loop filter to a given set of fragment rows in the given plane.
    1041             :   The filter may be run on the bottom edge, affecting pixels in the next row of
    1042             :    fragments, so this row also needs to be available.
    1043             :   _bv:        The bounding values array.
    1044             :   _refi:      The index of the frame buffer to filter.
    1045             :   _pli:       The color plane to filter.
    1046             :   _fragy0:    The Y coordinate of the first fragment row to filter.
    1047             :   _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
    1048           0 : void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
    1049             :  signed char *_bv,int _refi,int _pli,int _fragy0,int _fragy_end){
    1050             :   const oc_fragment_plane *fplane;
    1051             :   const oc_fragment       *frags;
    1052             :   const ptrdiff_t         *frag_buf_offs;
    1053             :   unsigned char           *ref_frame_data;
    1054             :   ptrdiff_t                fragi_top;
    1055             :   ptrdiff_t                fragi_bot;
    1056             :   ptrdiff_t                fragi0;
    1057             :   ptrdiff_t                fragi0_end;
    1058             :   int                      ystride;
    1059             :   int                      nhfrags;
    1060           0 :   _bv+=127;
    1061           0 :   fplane=_state->fplanes+_pli;
    1062           0 :   nhfrags=fplane->nhfrags;
    1063           0 :   fragi_top=fplane->froffset;
    1064           0 :   fragi_bot=fragi_top+fplane->nfrags;
    1065           0 :   fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
    1066           0 :   fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
    1067           0 :   ystride=_state->ref_ystride[_pli];
    1068           0 :   frags=_state->frags;
    1069           0 :   frag_buf_offs=_state->frag_buf_offs;
    1070           0 :   ref_frame_data=_state->ref_frame_data[_refi];
    1071             :   /*The following loops are constructed somewhat non-intuitively on purpose.
    1072             :     The main idea is: if a block boundary has at least one coded fragment on
    1073             :      it, the filter is applied to it.
    1074             :     However, the order that the filters are applied in matters, and VP3 chose
    1075             :      the somewhat strange ordering used below.*/
    1076           0 :   while(fragi0<fragi0_end){
    1077             :     ptrdiff_t fragi;
    1078             :     ptrdiff_t fragi_end;
    1079           0 :     fragi=fragi0;
    1080           0 :     fragi_end=fragi+nhfrags;
    1081           0 :     while(fragi<fragi_end){
    1082           0 :       if(frags[fragi].coded){
    1083             :         unsigned char *ref;
    1084           0 :         ref=ref_frame_data+frag_buf_offs[fragi];
    1085           0 :         if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
    1086           0 :         if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
    1087           0 :         if(fragi+1<fragi_end&&!frags[fragi+1].coded){
    1088           0 :           loop_filter_h(ref+8,ystride,_bv);
    1089             :         }
    1090           0 :         if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
    1091           0 :           loop_filter_v(ref+(ystride<<3),ystride,_bv);
    1092             :         }
    1093             :       }
    1094           0 :       fragi++;
    1095             :     }
    1096           0 :     fragi0+=nhfrags;
    1097             :   }
    1098           0 : }
    1099             : 
    1100             : #if defined(OC_DUMP_IMAGES)
    1101             : int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
    1102             :  const char *_suf){
    1103             :   /*Dump a PNG of the reconstructed image.*/
    1104             :   png_structp    png;
    1105             :   png_infop      info;
    1106             :   png_bytep     *image;
    1107             :   FILE          *fp;
    1108             :   char           fname[16];
    1109             :   unsigned char *y_row;
    1110             :   unsigned char *u_row;
    1111             :   unsigned char *v_row;
    1112             :   unsigned char *y;
    1113             :   unsigned char *u;
    1114             :   unsigned char *v;
    1115             :   ogg_int64_t    iframe;
    1116             :   ogg_int64_t    pframe;
    1117             :   int            y_stride;
    1118             :   int            u_stride;
    1119             :   int            v_stride;
    1120             :   int            framei;
    1121             :   int            width;
    1122             :   int            height;
    1123             :   int            imgi;
    1124             :   int            imgj;
    1125             :   width=_state->info.frame_width;
    1126             :   height=_state->info.frame_height;
    1127             :   iframe=_state->granpos>>_state->info.keyframe_granule_shift;
    1128             :   pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
    1129             :   sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
    1130             :   fp=fopen(fname,"wb");
    1131             :   if(fp==NULL)return TH_EFAULT;
    1132             :   image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
    1133             :   if(image==NULL){
    1134             :     fclose(fp);
    1135             :     return TH_EFAULT;
    1136             :   }
    1137             :   png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
    1138             :   if(png==NULL){
    1139             :     oc_free_2d(image);
    1140             :     fclose(fp);
    1141             :     return TH_EFAULT;
    1142             :   }
    1143             :   info=png_create_info_struct(png);
    1144             :   if(info==NULL){
    1145             :     png_destroy_write_struct(&png,NULL);
    1146             :     oc_free_2d(image);
    1147             :     fclose(fp);
    1148             :     return TH_EFAULT;
    1149             :   }
    1150             :   if(setjmp(png_jmpbuf(png))){
    1151             :     png_destroy_write_struct(&png,&info);
    1152             :     oc_free_2d(image);
    1153             :     fclose(fp);
    1154             :     return TH_EFAULT;
    1155             :   }
    1156             :   framei=_state->ref_frame_idx[_frame];
    1157             :   y_row=_state->ref_frame_bufs[framei][0].data;
    1158             :   u_row=_state->ref_frame_bufs[framei][1].data;
    1159             :   v_row=_state->ref_frame_bufs[framei][2].data;
    1160             :   y_stride=_state->ref_frame_bufs[framei][0].stride;
    1161             :   u_stride=_state->ref_frame_bufs[framei][1].stride;
    1162             :   v_stride=_state->ref_frame_bufs[framei][2].stride;
    1163             :   /*Chroma up-sampling is just done with a box filter.
    1164             :     This is very likely what will actually be used in practice on a real
    1165             :      display, and also removes one more layer to search in for the source of
    1166             :      artifacts.
    1167             :     As an added bonus, it's dead simple.*/
    1168             :   for(imgi=height;imgi-->0;){
    1169             :     int dc;
    1170             :     y=y_row;
    1171             :     u=u_row;
    1172             :     v=v_row;
    1173             :     for(imgj=0;imgj<6*width;){
    1174             :       float    yval;
    1175             :       float    uval;
    1176             :       float    vval;
    1177             :       unsigned rval;
    1178             :       unsigned gval;
    1179             :       unsigned bval;
    1180             :       /*This is intentionally slow and very accurate.*/
    1181             :       yval=(*y-16)*(1.0F/219);
    1182             :       uval=(*u-128)*(2*(1-0.114F)/224);
    1183             :       vval=(*v-128)*(2*(1-0.299F)/224);
    1184             :       rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
    1185             :       gval=OC_CLAMPI(0,(int)(65535*(
    1186             :        yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
    1187             :       bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
    1188             :       image[imgi][imgj++]=(unsigned char)(rval>>8);
    1189             :       image[imgi][imgj++]=(unsigned char)(rval&0xFF);
    1190             :       image[imgi][imgj++]=(unsigned char)(gval>>8);
    1191             :       image[imgi][imgj++]=(unsigned char)(gval&0xFF);
    1192             :       image[imgi][imgj++]=(unsigned char)(bval>>8);
    1193             :       image[imgi][imgj++]=(unsigned char)(bval&0xFF);
    1194             :       dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
    1195             :       y++;
    1196             :       u+=dc;
    1197             :       v+=dc;
    1198             :     }
    1199             :     dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
    1200             :     y_row+=y_stride;
    1201             :     u_row+=dc&u_stride;
    1202             :     v_row+=dc&v_stride;
    1203             :   }
    1204             :   png_init_io(png,fp);
    1205             :   png_set_compression_level(png,Z_BEST_COMPRESSION);
    1206             :   png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
    1207             :    PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
    1208             :   switch(_state->info.colorspace){
    1209             :     case TH_CS_ITU_REC_470M:{
    1210             :       png_set_gAMA(png,info,2.2);
    1211             :       png_set_cHRM_fixed(png,info,31006,31616,
    1212             :        67000,32000,21000,71000,14000,8000);
    1213             :     }break;
    1214             :     case TH_CS_ITU_REC_470BG:{
    1215             :       png_set_gAMA(png,info,2.67);
    1216             :       png_set_cHRM_fixed(png,info,31271,32902,
    1217             :        64000,33000,29000,60000,15000,6000);
    1218             :     }break;
    1219             :     default:break;
    1220             :   }
    1221             :   png_set_pHYs(png,info,_state->info.aspect_numerator,
    1222             :    _state->info.aspect_denominator,0);
    1223             :   png_set_rows(png,info,image);
    1224             :   png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
    1225             :   png_write_end(png,info);
    1226             :   png_destroy_write_struct(&png,&info);
    1227             :   oc_free_2d(image);
    1228             :   fclose(fp);
    1229             :   return 0;
    1230             : }
    1231             : #endif
    1232             : 
    1233             : 
    1234             : 
    1235           0 : ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
    1236             :   oc_theora_state *state;
    1237           0 :   state=(oc_theora_state *)_encdec;
    1238           0 :   if(_granpos>=0){
    1239             :     ogg_int64_t iframe;
    1240             :     ogg_int64_t pframe;
    1241           0 :     iframe=_granpos>>state->info.keyframe_granule_shift;
    1242           0 :     pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
    1243             :     /*3.2.0 streams store the frame index in the granule position.
    1244             :       3.2.1 and later store the frame count.
    1245             :       We return the index, so adjust the value if we have a 3.2.1 or later
    1246             :        stream.*/
    1247           0 :     return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
    1248             :   }
    1249           0 :   return -1;
    1250             : }
    1251             : 
    1252           0 : double th_granule_time(void *_encdec,ogg_int64_t _granpos){
    1253             :   oc_theora_state *state;
    1254           0 :   state=(oc_theora_state *)_encdec;
    1255           0 :   if(_granpos>=0){
    1256           0 :     return (th_granule_frame(_encdec, _granpos)+1)*(
    1257           0 :      (double)state->info.fps_denominator/state->info.fps_numerator);
    1258             :   }
    1259           0 :   return -1;
    1260             : }

Generated by: LCOV version 1.13