LCOV - code coverage report
Current view: top level - media/libvorbis/lib - vorbis_lsp.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 110 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 6 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /********************************************************************
       2             :  *                                                                  *
       3             :  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
       4             :  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
       5             :  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
       6             :  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
       7             :  *                                                                  *
       8             :  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
       9             :  * by the Xiph.Org Foundation http://www.xiph.org/                  *
      10             :  *                                                                  *
      11             :  ********************************************************************
      12             : 
      13             :   function: LSP (also called LSF) conversion routines
      14             :   last mod: $Id$
      15             : 
      16             :   The LSP generation code is taken (with minimal modification and a
      17             :   few bugfixes) from "On the Computation of the LSP Frequencies" by
      18             :   Joseph Rothweiler (see http://www.rothweiler.us for contact info).
      19             :   The paper is available at:
      20             : 
      21             :   http://www.myown1.com/joe/lsf
      22             : 
      23             :  ********************************************************************/
      24             : 
      25             : /* Note that the lpc-lsp conversion finds the roots of polynomial with
      26             :    an iterative root polisher (CACM algorithm 283).  It *is* possible
      27             :    to confuse this algorithm into not converging; that should only
      28             :    happen with absurdly closely spaced roots (very sharp peaks in the
      29             :    LPC f response) which in turn should be impossible in our use of
      30             :    the code.  If this *does* happen anyway, it's a bug in the floor
      31             :    finder; find the cause of the confusion (probably a single bin
      32             :    spike or accidental near-float-limit resolution problems) and
      33             :    correct it. */
      34             : 
      35             : #include <math.h>
      36             : #include <string.h>
      37             : #include <stdlib.h>
      38             : #include "lsp.h"
      39             : #include "os.h"
      40             : #include "misc.h"
      41             : #include "lookup.h"
      42             : #include "scales.h"
      43             : 
      44             : /* three possible LSP to f curve functions; the exact computation
      45             :    (float), a lookup based float implementation, and an integer
      46             :    implementation.  The float lookup is likely the optimal choice on
      47             :    any machine with an FPU.  The integer implementation is *not* fixed
      48             :    point (due to the need for a large dynamic range and thus a
      49             :    separately tracked exponent) and thus much more complex than the
      50             :    relatively simple float implementations. It's mostly for future
      51             :    work on a fully fixed point implementation for processors like the
      52             :    ARM family. */
      53             : 
      54             : /* define either of these (preferably FLOAT_LOOKUP) to have faster
      55             :    but less precise implementation. */
      56             : #undef FLOAT_LOOKUP
      57             : #undef INT_LOOKUP
      58             : 
      59             : #ifdef FLOAT_LOOKUP
      60             : #include "vorbis_lookup.c" /* catch this in the build system; we #include for
      61             :                        compilers (like gcc) that can't inline across
      62             :                        modules */
      63             : 
      64             : /* side effect: changes *lsp to cosines of lsp */
      65             : void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
      66             :                             float amp,float ampoffset){
      67             :   int i;
      68             :   float wdel=M_PI/ln;
      69             :   vorbis_fpu_control fpu;
      70             : 
      71             :   vorbis_fpu_setround(&fpu);
      72             :   for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
      73             : 
      74             :   i=0;
      75             :   while(i<n){
      76             :     int k=map[i];
      77             :     int qexp;
      78             :     float p=.7071067812f;
      79             :     float q=.7071067812f;
      80             :     float w=vorbis_coslook(wdel*k);
      81             :     float *ftmp=lsp;
      82             :     int c=m>>1;
      83             : 
      84             :     while(c--){
      85             :       q*=ftmp[0]-w;
      86             :       p*=ftmp[1]-w;
      87             :       ftmp+=2;
      88             :     }
      89             : 
      90             :     if(m&1){
      91             :       /* odd order filter; slightly assymetric */
      92             :       /* the last coefficient */
      93             :       q*=ftmp[0]-w;
      94             :       q*=q;
      95             :       p*=p*(1.f-w*w);
      96             :     }else{
      97             :       /* even order filter; still symmetric */
      98             :       q*=q*(1.f+w);
      99             :       p*=p*(1.f-w);
     100             :     }
     101             : 
     102             :     q=frexp(p+q,&qexp);
     103             :     q=vorbis_fromdBlook(amp*
     104             :                         vorbis_invsqlook(q)*
     105             :                         vorbis_invsq2explook(qexp+m)-
     106             :                         ampoffset);
     107             : 
     108             :     do{
     109             :       curve[i++]*=q;
     110             :     }while(map[i]==k);
     111             :   }
     112             :   vorbis_fpu_restore(fpu);
     113             : }
     114             : 
     115             : #else
     116             : 
     117             : #ifdef INT_LOOKUP
     118             : #include "vorbis_lookup.c" /* catch this in the build system; we #include for
     119             :                        compilers (like gcc) that can't inline across
     120             :                        modules */
     121             : 
     122             : static const int MLOOP_1[64]={
     123             :    0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
     124             :   14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
     125             :   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
     126             :   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
     127             : };
     128             : 
     129             : static const int MLOOP_2[64]={
     130             :   0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
     131             :   8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
     132             :   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
     133             :   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
     134             : };
     135             : 
     136             : static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
     137             : 
     138             : 
     139             : /* side effect: changes *lsp to cosines of lsp */
     140             : void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
     141             :                             float amp,float ampoffset){
     142             : 
     143             :   /* 0 <= m < 256 */
     144             : 
     145             :   /* set up for using all int later */
     146             :   int i;
     147             :   int ampoffseti=rint(ampoffset*4096.f);
     148             :   int ampi=rint(amp*16.f);
     149             :   long *ilsp=alloca(m*sizeof(*ilsp));
     150             :   for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
     151             : 
     152             :   i=0;
     153             :   while(i<n){
     154             :     int j,k=map[i];
     155             :     unsigned long pi=46341; /* 2**-.5 in 0.16 */
     156             :     unsigned long qi=46341;
     157             :     int qexp=0,shift;
     158             :     long wi=vorbis_coslook_i(k*65536/ln);
     159             : 
     160             :     qi*=labs(ilsp[0]-wi);
     161             :     pi*=labs(ilsp[1]-wi);
     162             : 
     163             :     for(j=3;j<m;j+=2){
     164             :       if(!(shift=MLOOP_1[(pi|qi)>>25]))
     165             :         if(!(shift=MLOOP_2[(pi|qi)>>19]))
     166             :           shift=MLOOP_3[(pi|qi)>>16];
     167             :       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
     168             :       pi=(pi>>shift)*labs(ilsp[j]-wi);
     169             :       qexp+=shift;
     170             :     }
     171             :     if(!(shift=MLOOP_1[(pi|qi)>>25]))
     172             :       if(!(shift=MLOOP_2[(pi|qi)>>19]))
     173             :         shift=MLOOP_3[(pi|qi)>>16];
     174             : 
     175             :     /* pi,qi normalized collectively, both tracked using qexp */
     176             : 
     177             :     if(m&1){
     178             :       /* odd order filter; slightly assymetric */
     179             :       /* the last coefficient */
     180             :       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
     181             :       pi=(pi>>shift)<<14;
     182             :       qexp+=shift;
     183             : 
     184             :       if(!(shift=MLOOP_1[(pi|qi)>>25]))
     185             :         if(!(shift=MLOOP_2[(pi|qi)>>19]))
     186             :           shift=MLOOP_3[(pi|qi)>>16];
     187             : 
     188             :       pi>>=shift;
     189             :       qi>>=shift;
     190             :       qexp+=shift-14*((m+1)>>1);
     191             : 
     192             :       pi=((pi*pi)>>16);
     193             :       qi=((qi*qi)>>16);
     194             :       qexp=qexp*2+m;
     195             : 
     196             :       pi*=(1<<14)-((wi*wi)>>14);
     197             :       qi+=pi>>14;
     198             : 
     199             :     }else{
     200             :       /* even order filter; still symmetric */
     201             : 
     202             :       /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
     203             :          worth tracking step by step */
     204             : 
     205             :       pi>>=shift;
     206             :       qi>>=shift;
     207             :       qexp+=shift-7*m;
     208             : 
     209             :       pi=((pi*pi)>>16);
     210             :       qi=((qi*qi)>>16);
     211             :       qexp=qexp*2+m;
     212             : 
     213             :       pi*=(1<<14)-wi;
     214             :       qi*=(1<<14)+wi;
     215             :       qi=(qi+pi)>>14;
     216             : 
     217             :     }
     218             : 
     219             : 
     220             :     /* we've let the normalization drift because it wasn't important;
     221             :        however, for the lookup, things must be normalized again.  We
     222             :        need at most one right shift or a number of left shifts */
     223             : 
     224             :     if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
     225             :       qi>>=1; qexp++;
     226             :     }else
     227             :       while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
     228             :         qi<<=1; qexp--;
     229             :       }
     230             : 
     231             :     amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
     232             :                             vorbis_invsqlook_i(qi,qexp)-
     233             :                                                       /*  m.8, m+n<=8 */
     234             :                             ampoffseti);              /*  8.12[0]     */
     235             : 
     236             :     curve[i]*=amp;
     237             :     while(map[++i]==k)curve[i]*=amp;
     238             :   }
     239             : }
     240             : 
     241             : #else
     242             : 
     243             : /* old, nonoptimized but simple version for any poor sap who needs to
     244             :    figure out what the hell this code does, or wants the other
     245             :    fraction of a dB precision */
     246             : 
     247             : /* side effect: changes *lsp to cosines of lsp */
     248           0 : void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
     249             :                             float amp,float ampoffset){
     250             :   int i;
     251           0 :   float wdel=M_PI/ln;
     252           0 :   for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
     253             : 
     254           0 :   i=0;
     255           0 :   while(i<n){
     256           0 :     int j,k=map[i];
     257           0 :     float p=.5f;
     258           0 :     float q=.5f;
     259           0 :     float w=2.f*cos(wdel*k);
     260           0 :     for(j=1;j<m;j+=2){
     261           0 :       q *= w-lsp[j-1];
     262           0 :       p *= w-lsp[j];
     263             :     }
     264           0 :     if(j==m){
     265             :       /* odd order filter; slightly assymetric */
     266             :       /* the last coefficient */
     267           0 :       q*=w-lsp[j-1];
     268           0 :       p*=p*(4.f-w*w);
     269           0 :       q*=q;
     270             :     }else{
     271             :       /* even order filter; still symmetric */
     272           0 :       p*=p*(2.f-w);
     273           0 :       q*=q*(2.f+w);
     274             :     }
     275             : 
     276           0 :     q=fromdB(amp/sqrt(p+q)-ampoffset);
     277             : 
     278           0 :     curve[i]*=q;
     279           0 :     while(map[++i]==k)curve[i]*=q;
     280             :   }
     281           0 : }
     282             : 
     283             : #endif
     284             : #endif
     285             : 
     286           0 : static void cheby(float *g, int ord) {
     287             :   int i, j;
     288             : 
     289           0 :   g[0] *= .5f;
     290           0 :   for(i=2; i<= ord; i++) {
     291           0 :     for(j=ord; j >= i; j--) {
     292           0 :       g[j-2] -= g[j];
     293           0 :       g[j] += g[j];
     294             :     }
     295             :   }
     296           0 : }
     297             : 
     298           0 : static int comp(const void *a,const void *b){
     299           0 :   return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
     300             : }
     301             : 
     302             : /* Newton-Raphson-Maehly actually functioned as a decent root finder,
     303             :    but there are root sets for which it gets into limit cycles
     304             :    (exacerbated by zero suppression) and fails.  We can't afford to
     305             :    fail, even if the failure is 1 in 100,000,000, so we now use
     306             :    Laguerre and later polish with Newton-Raphson (which can then
     307             :    afford to fail) */
     308             : 
     309             : #define EPSILON 10e-7
     310           0 : static int Laguerre_With_Deflation(float *a,int ord,float *r){
     311             :   int i,m;
     312           0 :   double *defl=alloca(sizeof(*defl)*(ord+1));
     313           0 :   for(i=0;i<=ord;i++)defl[i]=a[i];
     314             : 
     315           0 :   for(m=ord;m>0;m--){
     316           0 :     double new=0.f,delta;
     317             : 
     318             :     /* iterate a root */
     319           0 :     while(1){
     320           0 :       double p=defl[m],pp=0.f,ppp=0.f,denom;
     321             : 
     322             :       /* eval the polynomial and its first two derivatives */
     323           0 :       for(i=m;i>0;i--){
     324           0 :         ppp = new*ppp + pp;
     325           0 :         pp  = new*pp  + p;
     326           0 :         p   = new*p   + defl[i-1];
     327             :       }
     328             : 
     329             :       /* Laguerre's method */
     330           0 :       denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
     331           0 :       if(denom<0)
     332           0 :         return(-1);  /* complex root!  The LPC generator handed us a bad filter */
     333             : 
     334           0 :       if(pp>0){
     335           0 :         denom = pp + sqrt(denom);
     336           0 :         if(denom<EPSILON)denom=EPSILON;
     337             :       }else{
     338           0 :         denom = pp - sqrt(denom);
     339           0 :         if(denom>-(EPSILON))denom=-(EPSILON);
     340             :       }
     341             : 
     342           0 :       delta  = m*p/denom;
     343           0 :       new   -= delta;
     344             : 
     345           0 :       if(delta<0.f)delta*=-1;
     346             : 
     347           0 :       if(fabs(delta/new)<10e-12)break;
     348             :     }
     349             : 
     350           0 :     r[m-1]=new;
     351             : 
     352             :     /* forward deflation */
     353             : 
     354           0 :     for(i=m;i>0;i--)
     355           0 :       defl[i-1]+=new*defl[i];
     356           0 :     defl++;
     357             : 
     358             :   }
     359           0 :   return(0);
     360             : }
     361             : 
     362             : 
     363             : /* for spit-and-polish only */
     364           0 : static int Newton_Raphson(float *a,int ord,float *r){
     365           0 :   int i, k, count=0;
     366           0 :   double error=1.f;
     367           0 :   double *root=alloca(ord*sizeof(*root));
     368             : 
     369           0 :   for(i=0; i<ord;i++) root[i] = r[i];
     370             : 
     371           0 :   while(error>1e-20){
     372           0 :     error=0;
     373             : 
     374           0 :     for(i=0; i<ord; i++) { /* Update each point. */
     375           0 :       double pp=0.,delta;
     376           0 :       double rooti=root[i];
     377           0 :       double p=a[ord];
     378           0 :       for(k=ord-1; k>= 0; k--) {
     379             : 
     380           0 :         pp= pp* rooti + p;
     381           0 :         p = p * rooti + a[k];
     382             :       }
     383             : 
     384           0 :       delta = p/pp;
     385           0 :       root[i] -= delta;
     386           0 :       error+= delta*delta;
     387             :     }
     388             : 
     389           0 :     if(count>40)return(-1);
     390             : 
     391           0 :     count++;
     392             :   }
     393             : 
     394             :   /* Replaced the original bubble sort with a real sort.  With your
     395             :      help, we can eliminate the bubble sort in our lifetime. --Monty */
     396             : 
     397           0 :   for(i=0; i<ord;i++) r[i] = root[i];
     398           0 :   return(0);
     399             : }
     400             : 
     401             : 
     402             : /* Convert lpc coefficients to lsp coefficients */
     403           0 : int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
     404           0 :   int order2=(m+1)>>1;
     405             :   int g1_order,g2_order;
     406           0 :   float *g1=alloca(sizeof(*g1)*(order2+1));
     407           0 :   float *g2=alloca(sizeof(*g2)*(order2+1));
     408           0 :   float *g1r=alloca(sizeof(*g1r)*(order2+1));
     409           0 :   float *g2r=alloca(sizeof(*g2r)*(order2+1));
     410             :   int i;
     411             : 
     412             :   /* even and odd are slightly different base cases */
     413           0 :   g1_order=(m+1)>>1;
     414           0 :   g2_order=(m)  >>1;
     415             : 
     416             :   /* Compute the lengths of the x polynomials. */
     417             :   /* Compute the first half of K & R F1 & F2 polynomials. */
     418             :   /* Compute half of the symmetric and antisymmetric polynomials. */
     419             :   /* Remove the roots at +1 and -1. */
     420             : 
     421           0 :   g1[g1_order] = 1.f;
     422           0 :   for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
     423           0 :   g2[g2_order] = 1.f;
     424           0 :   for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
     425             : 
     426           0 :   if(g1_order>g2_order){
     427           0 :     for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
     428             :   }else{
     429           0 :     for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
     430           0 :     for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
     431             :   }
     432             : 
     433             :   /* Convert into polynomials in cos(alpha) */
     434           0 :   cheby(g1,g1_order);
     435           0 :   cheby(g2,g2_order);
     436             : 
     437             :   /* Find the roots of the 2 even polynomials.*/
     438           0 :   if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
     439           0 :      Laguerre_With_Deflation(g2,g2_order,g2r))
     440           0 :     return(-1);
     441             : 
     442           0 :   Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
     443           0 :   Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
     444             : 
     445           0 :   qsort(g1r,g1_order,sizeof(*g1r),comp);
     446           0 :   qsort(g2r,g2_order,sizeof(*g2r),comp);
     447             : 
     448           0 :   for(i=0;i<g1_order;i++)
     449           0 :     lsp[i*2] = acos(g1r[i]);
     450             : 
     451           0 :   for(i=0;i<g2_order;i++)
     452           0 :     lsp[i*2+1] = acos(g2r[i]);
     453           0 :   return(0);
     454             : }

Generated by: LCOV version 1.13