LCOV - code coverage report
Current view: top level - media/libvpx/libvpx/vp8/encoder - firstpass.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 1348 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 37 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include <math.h>
      12             : #include <limits.h>
      13             : #include <stdio.h>
      14             : 
      15             : #include "./vpx_dsp_rtcd.h"
      16             : #include "./vpx_scale_rtcd.h"
      17             : #include "block.h"
      18             : #include "onyx_int.h"
      19             : #include "vpx_dsp/variance.h"
      20             : #include "encodeintra.h"
      21             : #include "vp8/common/common.h"
      22             : #include "vp8/common/setupintrarecon.h"
      23             : #include "vp8/common/systemdependent.h"
      24             : #include "mcomp.h"
      25             : #include "firstpass.h"
      26             : #include "vpx_scale/vpx_scale.h"
      27             : #include "encodemb.h"
      28             : #include "vp8/common/extend.h"
      29             : #include "vpx_ports/system_state.h"
      30             : #include "vpx_mem/vpx_mem.h"
      31             : #include "vp8/common/swapyv12buffer.h"
      32             : #include "rdopt.h"
      33             : #include "vp8/common/quant_common.h"
      34             : #include "encodemv.h"
      35             : #include "encodeframe.h"
      36             : 
      37             : #define OUTPUT_FPF 0
      38             : 
      39             : extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
      40             : 
      41             : #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
      42             : extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
      43             : 
      44             : extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
      45             : 
      46             : #define IIFACTOR 1.5
      47             : #define IIKFACTOR1 1.40
      48             : #define IIKFACTOR2 1.5
      49             : #define RMAX 14.0
      50             : #define GF_RMAX 48.0
      51             : 
      52             : #define KF_MB_INTRA_MIN 300
      53             : #define GF_MB_INTRA_MIN 200
      54             : 
      55             : #define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001)
      56             : 
      57             : #define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0
      58             : #define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0
      59             : 
      60             : #define NEW_BOOST 1
      61             : 
      62             : static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 };
      63             : static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 };
      64             : 
      65             : static const int cq_level[QINDEX_RANGE] = {
      66             :   0,  0,  1,  1,  2,  3,  3,  4,  4,  5,  6,  6,  7,  8,  8,  9,  9,  10, 11,
      67             :   11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
      68             :   24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
      69             :   39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
      70             :   54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
      71             :   70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
      72             :   87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
      73             : };
      74             : 
      75             : static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
      76             : 
      77             : /* Resets the first pass file to the given position using a relative seek
      78             :  * from the current position
      79             :  */
      80           0 : static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) {
      81           0 :   cpi->twopass.stats_in = Position;
      82           0 : }
      83             : 
      84           0 : static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) {
      85           0 :   if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
      86             : 
      87           0 :   *next_frame = *cpi->twopass.stats_in;
      88           0 :   return 1;
      89             : }
      90             : 
      91             : /* Read frame stats at an offset from the current position */
      92           0 : static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats,
      93             :                             int offset) {
      94           0 :   FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
      95             : 
      96             :   /* Check legality of offset */
      97           0 :   if (offset >= 0) {
      98           0 :     if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF;
      99           0 :   } else if (offset < 0) {
     100           0 :     if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF;
     101             :   }
     102             : 
     103           0 :   *frame_stats = fps_ptr[offset];
     104           0 :   return 1;
     105             : }
     106             : 
     107           0 : static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) {
     108           0 :   if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
     109             : 
     110           0 :   *fps = *cpi->twopass.stats_in;
     111           0 :   cpi->twopass.stats_in =
     112           0 :       (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
     113           0 :   return 1;
     114             : }
     115             : 
     116           0 : static void output_stats(const VP8_COMP *cpi,
     117             :                          struct vpx_codec_pkt_list *pktlist,
     118             :                          FIRSTPASS_STATS *stats) {
     119             :   struct vpx_codec_cx_pkt pkt;
     120             :   (void)cpi;
     121           0 :   pkt.kind = VPX_CODEC_STATS_PKT;
     122           0 :   pkt.data.twopass_stats.buf = stats;
     123           0 :   pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
     124           0 :   vpx_codec_pkt_list_add(pktlist, &pkt);
     125             : 
     126             : /* TEMP debug code */
     127             : #if OUTPUT_FPF
     128             : 
     129             :   {
     130             :     FILE *fpfile;
     131             :     fpfile = fopen("firstpass.stt", "a");
     132             : 
     133             :     fprintf(fpfile,
     134             :             "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f"
     135             :             " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
     136             :             " %12.0f %12.0f %12.4f\n",
     137             :             stats->frame, stats->intra_error, stats->coded_error,
     138             :             stats->ssim_weighted_pred_err, stats->pcnt_inter,
     139             :             stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
     140             :             stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
     141             :             stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
     142             :             stats->count, stats->duration);
     143             :     fclose(fpfile);
     144             :   }
     145             : #endif
     146           0 : }
     147             : 
     148           0 : static void zero_stats(FIRSTPASS_STATS *section) {
     149           0 :   section->frame = 0.0;
     150           0 :   section->intra_error = 0.0;
     151           0 :   section->coded_error = 0.0;
     152           0 :   section->ssim_weighted_pred_err = 0.0;
     153           0 :   section->pcnt_inter = 0.0;
     154           0 :   section->pcnt_motion = 0.0;
     155           0 :   section->pcnt_second_ref = 0.0;
     156           0 :   section->pcnt_neutral = 0.0;
     157           0 :   section->MVr = 0.0;
     158           0 :   section->mvr_abs = 0.0;
     159           0 :   section->MVc = 0.0;
     160           0 :   section->mvc_abs = 0.0;
     161           0 :   section->MVrv = 0.0;
     162           0 :   section->MVcv = 0.0;
     163           0 :   section->mv_in_out_count = 0.0;
     164           0 :   section->new_mv_count = 0.0;
     165           0 :   section->count = 0.0;
     166           0 :   section->duration = 1.0;
     167           0 : }
     168             : 
     169           0 : static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
     170           0 :   section->frame += frame->frame;
     171           0 :   section->intra_error += frame->intra_error;
     172           0 :   section->coded_error += frame->coded_error;
     173           0 :   section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
     174           0 :   section->pcnt_inter += frame->pcnt_inter;
     175           0 :   section->pcnt_motion += frame->pcnt_motion;
     176           0 :   section->pcnt_second_ref += frame->pcnt_second_ref;
     177           0 :   section->pcnt_neutral += frame->pcnt_neutral;
     178           0 :   section->MVr += frame->MVr;
     179           0 :   section->mvr_abs += frame->mvr_abs;
     180           0 :   section->MVc += frame->MVc;
     181           0 :   section->mvc_abs += frame->mvc_abs;
     182           0 :   section->MVrv += frame->MVrv;
     183           0 :   section->MVcv += frame->MVcv;
     184           0 :   section->mv_in_out_count += frame->mv_in_out_count;
     185           0 :   section->new_mv_count += frame->new_mv_count;
     186           0 :   section->count += frame->count;
     187           0 :   section->duration += frame->duration;
     188           0 : }
     189             : 
     190           0 : static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
     191           0 :   section->frame -= frame->frame;
     192           0 :   section->intra_error -= frame->intra_error;
     193           0 :   section->coded_error -= frame->coded_error;
     194           0 :   section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
     195           0 :   section->pcnt_inter -= frame->pcnt_inter;
     196           0 :   section->pcnt_motion -= frame->pcnt_motion;
     197           0 :   section->pcnt_second_ref -= frame->pcnt_second_ref;
     198           0 :   section->pcnt_neutral -= frame->pcnt_neutral;
     199           0 :   section->MVr -= frame->MVr;
     200           0 :   section->mvr_abs -= frame->mvr_abs;
     201           0 :   section->MVc -= frame->MVc;
     202           0 :   section->mvc_abs -= frame->mvc_abs;
     203           0 :   section->MVrv -= frame->MVrv;
     204           0 :   section->MVcv -= frame->MVcv;
     205           0 :   section->mv_in_out_count -= frame->mv_in_out_count;
     206           0 :   section->new_mv_count -= frame->new_mv_count;
     207           0 :   section->count -= frame->count;
     208           0 :   section->duration -= frame->duration;
     209           0 : }
     210             : 
     211           0 : static void avg_stats(FIRSTPASS_STATS *section) {
     212           0 :   if (section->count < 1.0) return;
     213             : 
     214           0 :   section->intra_error /= section->count;
     215           0 :   section->coded_error /= section->count;
     216           0 :   section->ssim_weighted_pred_err /= section->count;
     217           0 :   section->pcnt_inter /= section->count;
     218           0 :   section->pcnt_second_ref /= section->count;
     219           0 :   section->pcnt_neutral /= section->count;
     220           0 :   section->pcnt_motion /= section->count;
     221           0 :   section->MVr /= section->count;
     222           0 :   section->mvr_abs /= section->count;
     223           0 :   section->MVc /= section->count;
     224           0 :   section->mvc_abs /= section->count;
     225           0 :   section->MVrv /= section->count;
     226           0 :   section->MVcv /= section->count;
     227           0 :   section->mv_in_out_count /= section->count;
     228           0 :   section->duration /= section->count;
     229             : }
     230             : 
     231             : /* Calculate a modified Error used in distributing bits between easier
     232             :  * and harder frames
     233             :  */
     234           0 : static double calculate_modified_err(VP8_COMP *cpi,
     235             :                                      FIRSTPASS_STATS *this_frame) {
     236           0 :   double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err /
     237           0 :                    cpi->twopass.total_stats.count);
     238           0 :   double this_err = this_frame->ssim_weighted_pred_err;
     239             :   double modified_err;
     240             : 
     241           0 :   if (this_err > av_err) {
     242           0 :     modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
     243             :   } else {
     244           0 :     modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
     245             :   }
     246             : 
     247           0 :   return modified_err;
     248             : }
     249             : 
     250             : static const double weight_table[256] = {
     251             :   0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
     252             :   0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
     253             :   0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
     254             :   0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
     255             :   0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500,
     256             :   0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250,
     257             :   0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000,
     258             :   0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
     259             :   0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500,
     260             :   0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     261             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     262             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     263             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     264             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     265             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     266             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     267             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     268             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     269             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     270             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     271             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     272             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     273             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     274             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     275             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     276             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     277             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     278             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     279             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     280             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     281             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     282             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     283             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     284             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     285             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     286             :   1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
     287             :   1.000000, 1.000000, 1.000000, 1.000000
     288             : };
     289             : 
     290           0 : static double simple_weight(YV12_BUFFER_CONFIG *source) {
     291             :   int i, j;
     292             : 
     293           0 :   unsigned char *src = source->y_buffer;
     294           0 :   double sum_weights = 0.0;
     295             : 
     296             :   /* Loop throught the Y plane raw examining levels and creating a weight
     297             :    * for the image
     298             :    */
     299           0 :   i = source->y_height;
     300             :   do {
     301           0 :     j = source->y_width;
     302             :     do {
     303           0 :       sum_weights += weight_table[*src];
     304           0 :       src++;
     305           0 :     } while (--j);
     306           0 :     src -= source->y_width;
     307           0 :     src += source->y_stride;
     308           0 :   } while (--i);
     309             : 
     310           0 :   sum_weights /= (source->y_height * source->y_width);
     311             : 
     312           0 :   return sum_weights;
     313             : }
     314             : 
     315             : /* This function returns the current per frame maximum bitrate target */
     316           0 : static int frame_max_bits(VP8_COMP *cpi) {
     317             :   /* Max allocation for a single frame based on the max section guidelines
     318             :    * passed in and how many bits are left
     319             :    */
     320             :   int max_bits;
     321             : 
     322             :   /* For CBR we need to also consider buffer fullness.
     323             :    * If we are running below the optimal level then we need to gradually
     324             :    * tighten up on max_bits.
     325             :    */
     326           0 :   if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
     327           0 :     double buffer_fullness_ratio =
     328           0 :         (double)cpi->buffer_level /
     329           0 :         DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
     330             : 
     331             :     /* For CBR base this on the target average bits per frame plus the
     332             :      * maximum sedction rate passed in by the user
     333             :      */
     334           0 :     max_bits = (int)(cpi->av_per_frame_bandwidth *
     335           0 :                      ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
     336             : 
     337             :     /* If our buffer is below the optimum level */
     338           0 :     if (buffer_fullness_ratio < 1.0) {
     339             :       /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */
     340           0 :       int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2))
     341           0 :                              ? cpi->av_per_frame_bandwidth >> 2
     342           0 :                              : max_bits >> 2;
     343             : 
     344           0 :       max_bits = (int)(max_bits * buffer_fullness_ratio);
     345             : 
     346             :       /* Lowest value we will set ... which should allow the buffer to
     347             :        * refill.
     348             :        */
     349           0 :       if (max_bits < min_max_bits) max_bits = min_max_bits;
     350             :     }
     351             :   }
     352             :   /* VBR */
     353             :   else {
     354             :     /* For VBR base this on the bits and frames left plus the
     355             :      * two_pass_vbrmax_section rate passed in by the user
     356             :      */
     357           0 :     max_bits = (int)(((double)cpi->twopass.bits_left /
     358           0 :                       (cpi->twopass.total_stats.count -
     359           0 :                        (double)cpi->common.current_video_frame)) *
     360           0 :                      ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
     361             :   }
     362             : 
     363             :   /* Trap case where we are out of bits */
     364           0 :   if (max_bits < 0) max_bits = 0;
     365             : 
     366           0 :   return max_bits;
     367             : }
     368             : 
     369           0 : void vp8_init_first_pass(VP8_COMP *cpi) {
     370           0 :   zero_stats(&cpi->twopass.total_stats);
     371           0 : }
     372             : 
     373           0 : void vp8_end_first_pass(VP8_COMP *cpi) {
     374           0 :   output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats);
     375           0 : }
     376             : 
     377           0 : static void zz_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
     378             :                              YV12_BUFFER_CONFIG *raw_buffer,
     379             :                              int *raw_motion_err,
     380             :                              YV12_BUFFER_CONFIG *recon_buffer,
     381             :                              int *best_motion_err, int recon_yoffset) {
     382           0 :   MACROBLOCKD *const xd = &x->e_mbd;
     383           0 :   BLOCK *b = &x->block[0];
     384           0 :   BLOCKD *d = &x->e_mbd.block[0];
     385             : 
     386           0 :   unsigned char *src_ptr = (*(b->base_src) + b->src);
     387           0 :   int src_stride = b->src_stride;
     388             :   unsigned char *raw_ptr;
     389           0 :   int raw_stride = raw_buffer->y_stride;
     390             :   unsigned char *ref_ptr;
     391           0 :   int ref_stride = x->e_mbd.pre.y_stride;
     392             :   (void)cpi;
     393             : 
     394             :   /* Set up pointers for this macro block raw buffer */
     395           0 :   raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset);
     396           0 :   vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride,
     397             :                (unsigned int *)(raw_motion_err));
     398             : 
     399             :   /* Set up pointers for this macro block recon buffer */
     400           0 :   xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
     401           0 :   ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset);
     402           0 :   vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride,
     403             :                (unsigned int *)(best_motion_err));
     404           0 : }
     405             : 
     406           0 : static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
     407             :                                      int_mv *ref_mv, MV *best_mv,
     408             :                                      YV12_BUFFER_CONFIG *recon_buffer,
     409             :                                      int *best_motion_err, int recon_yoffset) {
     410           0 :   MACROBLOCKD *const xd = &x->e_mbd;
     411           0 :   BLOCK *b = &x->block[0];
     412           0 :   BLOCKD *d = &x->e_mbd.block[0];
     413             :   int num00;
     414             : 
     415             :   int_mv tmp_mv;
     416             :   int_mv ref_mv_full;
     417             : 
     418             :   int tmp_err;
     419           0 :   int step_param = 3; /* Dont search over full range for first pass */
     420           0 :   int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
     421             :   int n;
     422           0 :   vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
     423           0 :   int new_mv_mode_penalty = 256;
     424             : 
     425             :   /* override the default variance function to use MSE */
     426           0 :   v_fn_ptr.vf = vpx_mse16x16;
     427             : 
     428             :   /* Set up pointers for this macro block recon buffer */
     429           0 :   xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
     430             : 
     431             :   /* Initial step/diamond search centred on best mv */
     432           0 :   tmp_mv.as_int = 0;
     433           0 :   ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
     434           0 :   ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
     435           0 :   tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
     436             :                                     x->sadperbit16, &num00, &v_fn_ptr,
     437           0 :                                     x->mvcost, ref_mv);
     438           0 :   if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
     439             : 
     440           0 :   if (tmp_err < *best_motion_err) {
     441           0 :     *best_motion_err = tmp_err;
     442           0 :     best_mv->row = tmp_mv.as_mv.row;
     443           0 :     best_mv->col = tmp_mv.as_mv.col;
     444             :   }
     445             : 
     446             :   /* Further step/diamond searches as necessary */
     447           0 :   n = num00;
     448           0 :   num00 = 0;
     449             : 
     450           0 :   while (n < further_steps) {
     451           0 :     n++;
     452             : 
     453           0 :     if (num00) {
     454           0 :       num00--;
     455             :     } else {
     456           0 :       tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
     457             :                                         step_param + n, x->sadperbit16, &num00,
     458           0 :                                         &v_fn_ptr, x->mvcost, ref_mv);
     459           0 :       if (tmp_err < INT_MAX - new_mv_mode_penalty) {
     460           0 :         tmp_err += new_mv_mode_penalty;
     461             :       }
     462             : 
     463           0 :       if (tmp_err < *best_motion_err) {
     464           0 :         *best_motion_err = tmp_err;
     465           0 :         best_mv->row = tmp_mv.as_mv.row;
     466           0 :         best_mv->col = tmp_mv.as_mv.col;
     467             :       }
     468             :     }
     469             :   }
     470           0 : }
     471             : 
     472           0 : void vp8_first_pass(VP8_COMP *cpi) {
     473             :   int mb_row, mb_col;
     474           0 :   MACROBLOCK *const x = &cpi->mb;
     475           0 :   VP8_COMMON *const cm = &cpi->common;
     476           0 :   MACROBLOCKD *const xd = &x->e_mbd;
     477             : 
     478             :   int recon_yoffset, recon_uvoffset;
     479           0 :   YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
     480           0 :   YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
     481           0 :   YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
     482           0 :   int recon_y_stride = lst_yv12->y_stride;
     483           0 :   int recon_uv_stride = lst_yv12->uv_stride;
     484           0 :   int64_t intra_error = 0;
     485           0 :   int64_t coded_error = 0;
     486             : 
     487           0 :   int sum_mvr = 0, sum_mvc = 0;
     488           0 :   int sum_mvr_abs = 0, sum_mvc_abs = 0;
     489           0 :   int sum_mvrs = 0, sum_mvcs = 0;
     490           0 :   int mvcount = 0;
     491           0 :   int intercount = 0;
     492           0 :   int second_ref_count = 0;
     493           0 :   int intrapenalty = 256;
     494           0 :   int neutral_count = 0;
     495           0 :   int new_mv_count = 0;
     496           0 :   int sum_in_vectors = 0;
     497           0 :   uint32_t lastmv_as_int = 0;
     498             : 
     499             :   int_mv zero_ref_mv;
     500             : 
     501           0 :   zero_ref_mv.as_int = 0;
     502             : 
     503           0 :   vpx_clear_system_state();
     504             : 
     505           0 :   x->src = *cpi->Source;
     506           0 :   xd->pre = *lst_yv12;
     507           0 :   xd->dst = *new_yv12;
     508             : 
     509           0 :   x->partition_info = x->pi;
     510             : 
     511           0 :   xd->mode_info_context = cm->mi;
     512             : 
     513           0 :   if (!cm->use_bilinear_mc_filter) {
     514           0 :     xd->subpixel_predict = vp8_sixtap_predict4x4;
     515           0 :     xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
     516           0 :     xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
     517           0 :     xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
     518             :   } else {
     519           0 :     xd->subpixel_predict = vp8_bilinear_predict4x4;
     520           0 :     xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
     521           0 :     xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
     522           0 :     xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
     523             :   }
     524             : 
     525           0 :   vp8_build_block_offsets(x);
     526             : 
     527             :   /* set up frame new frame for intra coded blocks */
     528           0 :   vp8_setup_intra_recon(new_yv12);
     529           0 :   vp8cx_frame_init_quantizer(cpi);
     530             : 
     531             :   /* Initialise the MV cost table to the defaults */
     532             :   {
     533           0 :     int flag[2] = { 1, 1 };
     534           0 :     vp8_initialize_rd_consts(cpi, x,
     535             :                              vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
     536           0 :     memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
     537           0 :     vp8_build_component_cost_table(cpi->mb.mvcost,
     538           0 :                                    (const MV_CONTEXT *)cm->fc.mvc, flag);
     539             :   }
     540             : 
     541             :   /* for each macroblock row in image */
     542           0 :   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
     543             :     int_mv best_ref_mv;
     544             : 
     545           0 :     best_ref_mv.as_int = 0;
     546             : 
     547             :     /* reset above block coeffs */
     548           0 :     xd->up_available = (mb_row != 0);
     549           0 :     recon_yoffset = (mb_row * recon_y_stride * 16);
     550           0 :     recon_uvoffset = (mb_row * recon_uv_stride * 8);
     551             : 
     552             :     /* Set up limit values for motion vectors to prevent them extending
     553             :      * outside the UMV borders
     554             :      */
     555           0 :     x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
     556           0 :     x->mv_row_max =
     557           0 :         ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
     558             : 
     559             :     /* for each macroblock col in image */
     560           0 :     for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
     561             :       int this_error;
     562           0 :       int gf_motion_error = INT_MAX;
     563           0 :       int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
     564             : 
     565           0 :       xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
     566           0 :       xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
     567           0 :       xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
     568           0 :       xd->left_available = (mb_col != 0);
     569             : 
     570             :       /* Copy current mb to a buffer */
     571           0 :       vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
     572             : 
     573             :       /* do intra 16x16 prediction */
     574           0 :       this_error = vp8_encode_intra(cpi, x, use_dc_pred);
     575             : 
     576             :       /* "intrapenalty" below deals with situations where the intra
     577             :        * and inter error scores are very low (eg a plain black frame)
     578             :        * We do not have special cases in first pass for 0,0 and
     579             :        * nearest etc so all inter modes carry an overhead cost
     580             :        * estimate fot the mv. When the error score is very low this
     581             :        * causes us to pick all or lots of INTRA modes and throw lots
     582             :        * of key frames. This penalty adds a cost matching that of a
     583             :        * 0,0 mv to the intra case.
     584             :        */
     585           0 :       this_error += intrapenalty;
     586             : 
     587             :       /* Cumulative intra error total */
     588           0 :       intra_error += (int64_t)this_error;
     589             : 
     590             :       /* Set up limit values for motion vectors to prevent them
     591             :        * extending outside the UMV borders
     592             :        */
     593           0 :       x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
     594           0 :       x->mv_col_max =
     595           0 :           ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
     596             : 
     597             :       /* Other than for the first frame do a motion search */
     598           0 :       if (cm->current_video_frame > 0) {
     599           0 :         BLOCKD *d = &x->e_mbd.block[0];
     600           0 :         MV tmp_mv = { 0, 0 };
     601             :         int tmp_err;
     602           0 :         int motion_error = INT_MAX;
     603           0 :         int raw_motion_error = INT_MAX;
     604             : 
     605             :         /* Simple 0,0 motion with no mv overhead */
     606           0 :         zz_motion_search(cpi, x, cpi->last_frame_unscaled_source,
     607             :                          &raw_motion_error, lst_yv12, &motion_error,
     608             :                          recon_yoffset);
     609           0 :         d->bmi.mv.as_mv.row = 0;
     610           0 :         d->bmi.mv.as_mv.col = 0;
     611             : 
     612           0 :         if (raw_motion_error < cpi->oxcf.encode_breakout) {
     613           0 :           goto skip_motion_search;
     614             :         }
     615             : 
     616             :         /* Test last reference frame using the previous best mv as the
     617             :          * starting point (best reference) for the search
     618             :          */
     619           0 :         first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv,
     620             :                                  lst_yv12, &motion_error, recon_yoffset);
     621             : 
     622             :         /* If the current best reference mv is not centred on 0,0
     623             :          * then do a 0,0 based search as well
     624             :          */
     625           0 :         if (best_ref_mv.as_int) {
     626           0 :           tmp_err = INT_MAX;
     627           0 :           first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12,
     628             :                                    &tmp_err, recon_yoffset);
     629             : 
     630           0 :           if (tmp_err < motion_error) {
     631           0 :             motion_error = tmp_err;
     632           0 :             d->bmi.mv.as_mv.row = tmp_mv.row;
     633           0 :             d->bmi.mv.as_mv.col = tmp_mv.col;
     634             :           }
     635             :         }
     636             : 
     637             :         /* Experimental search in a second reference frame ((0,0)
     638             :          * based only)
     639             :          */
     640           0 :         if (cm->current_video_frame > 1) {
     641           0 :           first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12,
     642             :                                    &gf_motion_error, recon_yoffset);
     643             : 
     644           0 :           if ((gf_motion_error < motion_error) &&
     645           0 :               (gf_motion_error < this_error)) {
     646           0 :             second_ref_count++;
     647             :           }
     648             : 
     649             :           /* Reset to last frame as reference buffer */
     650           0 :           xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
     651           0 :           xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
     652           0 :           xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
     653             :         }
     654             : 
     655             :       skip_motion_search:
     656             :         /* Intra assumed best */
     657           0 :         best_ref_mv.as_int = 0;
     658             : 
     659           0 :         if (motion_error <= this_error) {
     660             :           /* Keep a count of cases where the inter and intra were
     661             :            * very close and very low. This helps with scene cut
     662             :            * detection for example in cropped clips with black bars
     663             :            * at the sides or top and bottom.
     664             :            */
     665           0 :           if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) &&
     666           0 :               (this_error < (2 * intrapenalty))) {
     667           0 :             neutral_count++;
     668             :           }
     669             : 
     670           0 :           d->bmi.mv.as_mv.row *= 8;
     671           0 :           d->bmi.mv.as_mv.col *= 8;
     672           0 :           this_error = motion_error;
     673           0 :           vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv);
     674           0 :           vp8_encode_inter16x16y(x);
     675           0 :           sum_mvr += d->bmi.mv.as_mv.row;
     676           0 :           sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
     677           0 :           sum_mvc += d->bmi.mv.as_mv.col;
     678           0 :           sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
     679           0 :           sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
     680           0 :           sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
     681           0 :           intercount++;
     682             : 
     683           0 :           best_ref_mv.as_int = d->bmi.mv.as_int;
     684             : 
     685             :           /* Was the vector non-zero */
     686           0 :           if (d->bmi.mv.as_int) {
     687           0 :             mvcount++;
     688             : 
     689             :             /* Was it different from the last non zero vector */
     690           0 :             if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++;
     691           0 :             lastmv_as_int = d->bmi.mv.as_int;
     692             : 
     693             :             /* Does the Row vector point inwards or outwards */
     694           0 :             if (mb_row < cm->mb_rows / 2) {
     695           0 :               if (d->bmi.mv.as_mv.row > 0) {
     696           0 :                 sum_in_vectors--;
     697           0 :               } else if (d->bmi.mv.as_mv.row < 0) {
     698           0 :                 sum_in_vectors++;
     699             :               }
     700           0 :             } else if (mb_row > cm->mb_rows / 2) {
     701           0 :               if (d->bmi.mv.as_mv.row > 0) {
     702           0 :                 sum_in_vectors++;
     703           0 :               } else if (d->bmi.mv.as_mv.row < 0) {
     704           0 :                 sum_in_vectors--;
     705             :               }
     706             :             }
     707             : 
     708             :             /* Does the Row vector point inwards or outwards */
     709           0 :             if (mb_col < cm->mb_cols / 2) {
     710           0 :               if (d->bmi.mv.as_mv.col > 0) {
     711           0 :                 sum_in_vectors--;
     712           0 :               } else if (d->bmi.mv.as_mv.col < 0) {
     713           0 :                 sum_in_vectors++;
     714             :               }
     715           0 :             } else if (mb_col > cm->mb_cols / 2) {
     716           0 :               if (d->bmi.mv.as_mv.col > 0) {
     717           0 :                 sum_in_vectors++;
     718           0 :               } else if (d->bmi.mv.as_mv.col < 0) {
     719           0 :                 sum_in_vectors--;
     720             :               }
     721             :             }
     722             :           }
     723             :         }
     724             :       }
     725             : 
     726           0 :       coded_error += (int64_t)this_error;
     727             : 
     728             :       /* adjust to the next column of macroblocks */
     729           0 :       x->src.y_buffer += 16;
     730           0 :       x->src.u_buffer += 8;
     731           0 :       x->src.v_buffer += 8;
     732             : 
     733           0 :       recon_yoffset += 16;
     734           0 :       recon_uvoffset += 8;
     735             :     }
     736             : 
     737             :     /* adjust to the next row of mbs */
     738           0 :     x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
     739           0 :     x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
     740           0 :     x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
     741             : 
     742             :     /* extend the recon for intra prediction */
     743           0 :     vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8,
     744           0 :                       xd->dst.v_buffer + 8);
     745           0 :     vpx_clear_system_state();
     746             :   }
     747             : 
     748           0 :   vpx_clear_system_state();
     749             :   {
     750           0 :     double weight = 0.0;
     751             : 
     752             :     FIRSTPASS_STATS fps;
     753             : 
     754           0 :     fps.frame = cm->current_video_frame;
     755           0 :     fps.intra_error = (double)(intra_error >> 8);
     756           0 :     fps.coded_error = (double)(coded_error >> 8);
     757           0 :     weight = simple_weight(cpi->Source);
     758             : 
     759           0 :     if (weight < 0.1) weight = 0.1;
     760             : 
     761           0 :     fps.ssim_weighted_pred_err = fps.coded_error * weight;
     762             : 
     763           0 :     fps.pcnt_inter = 0.0;
     764           0 :     fps.pcnt_motion = 0.0;
     765           0 :     fps.MVr = 0.0;
     766           0 :     fps.mvr_abs = 0.0;
     767           0 :     fps.MVc = 0.0;
     768           0 :     fps.mvc_abs = 0.0;
     769           0 :     fps.MVrv = 0.0;
     770           0 :     fps.MVcv = 0.0;
     771           0 :     fps.mv_in_out_count = 0.0;
     772           0 :     fps.new_mv_count = 0.0;
     773           0 :     fps.count = 1.0;
     774             : 
     775           0 :     fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
     776           0 :     fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
     777           0 :     fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
     778             : 
     779           0 :     if (mvcount > 0) {
     780           0 :       fps.MVr = (double)sum_mvr / (double)mvcount;
     781           0 :       fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
     782           0 :       fps.MVc = (double)sum_mvc / (double)mvcount;
     783           0 :       fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
     784           0 :       fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) /
     785           0 :                  (double)mvcount;
     786           0 :       fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) /
     787           0 :                  (double)mvcount;
     788           0 :       fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
     789           0 :       fps.new_mv_count = new_mv_count;
     790             : 
     791           0 :       fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
     792             :     }
     793             : 
     794             :     /* TODO:  handle the case when duration is set to 0, or something less
     795             :      * than the full time between subsequent cpi->source_time_stamps
     796             :      */
     797           0 :     fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start);
     798             : 
     799             :     /* don't want to do output stats with a stack variable! */
     800           0 :     memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS));
     801           0 :     output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
     802           0 :     accumulate_stats(&cpi->twopass.total_stats, &fps);
     803             :   }
     804             : 
     805             :   /* Copy the previous Last Frame into the GF buffer if specific
     806             :    * conditions for doing so are met
     807             :    */
     808           0 :   if ((cm->current_video_frame > 0) &&
     809           0 :       (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
     810           0 :       ((cpi->twopass.this_frame_stats.intra_error /
     811           0 :         DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
     812             :        2.0)) {
     813           0 :     vp8_yv12_copy_frame(lst_yv12, gld_yv12);
     814             :   }
     815             : 
     816             :   /* swap frame pointers so last frame refers to the frame we just
     817             :    * compressed
     818             :    */
     819           0 :   vp8_swap_yv12_buffer(lst_yv12, new_yv12);
     820           0 :   vp8_yv12_extend_frame_borders(lst_yv12);
     821             : 
     822             :   /* Special case for the first frame. Copy into the GF buffer as a
     823             :    * second reference.
     824             :    */
     825           0 :   if (cm->current_video_frame == 0) {
     826           0 :     vp8_yv12_copy_frame(lst_yv12, gld_yv12);
     827             :   }
     828             : 
     829             :   /* use this to see what the first pass reconstruction looks like */
     830             :   if (0) {
     831             :     char filename[512];
     832             :     FILE *recon_file;
     833             :     sprintf(filename, "enc%04d.yuv", (int)cm->current_video_frame);
     834             : 
     835             :     if (cm->current_video_frame == 0) {
     836             :       recon_file = fopen(filename, "wb");
     837             :     } else {
     838             :       recon_file = fopen(filename, "ab");
     839             :     }
     840             : 
     841             :     (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
     842             :     fclose(recon_file);
     843             :   }
     844             : 
     845           0 :   cm->current_video_frame++;
     846           0 : }
     847             : extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
     848             : 
     849             : /* Estimate a cost per mb attributable to overheads such as the coding of
     850             :  * modes and motion vectors.
     851             :  * Currently simplistic in its assumptions for testing.
     852             :  */
     853             : 
     854           0 : static double bitcost(double prob) {
     855           0 :   if (prob > 0.000122) {
     856           0 :     return -log(prob) / log(2.0);
     857             :   } else {
     858           0 :     return 13.0;
     859             :   }
     860             : }
     861           0 : static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) {
     862             :   int mv_cost;
     863             :   int64_t mode_cost;
     864             : 
     865           0 :   double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
     866           0 :   double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
     867           0 :   double av_intra = (1.0 - av_pct_inter);
     868             : 
     869             :   double zz_cost;
     870             :   double motion_cost;
     871             :   double intra_cost;
     872             : 
     873           0 :   zz_cost = bitcost(av_pct_inter - av_pct_motion);
     874           0 :   motion_cost = bitcost(av_pct_motion);
     875           0 :   intra_cost = bitcost(av_intra);
     876             : 
     877             :   /* Estimate of extra bits per mv overhead for mbs
     878             :    * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
     879             :    */
     880           0 :   mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
     881             : 
     882             :   /* Crude estimate of overhead cost from modes
     883             :    * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
     884             :    */
     885           0 :   mode_cost =
     886           0 :       (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) +
     887           0 :                  (av_pct_motion * motion_cost) + (av_intra * intra_cost)) *
     888           0 :                 cpi->common.MBs) *
     889             :       512;
     890             : 
     891           0 :   return mv_cost + mode_cost;
     892             : }
     893             : 
     894           0 : static double calc_correction_factor(double err_per_mb, double err_devisor,
     895             :                                      double pt_low, double pt_high, int Q) {
     896             :   double power_term;
     897           0 :   double error_term = err_per_mb / err_devisor;
     898             :   double correction_factor;
     899             : 
     900             :   /* Adjustment based on Q to power term. */
     901           0 :   power_term = pt_low + (Q * 0.01);
     902           0 :   power_term = (power_term > pt_high) ? pt_high : power_term;
     903             : 
     904             :   /* Adjustments to error term */
     905             :   /* TBD */
     906             : 
     907             :   /* Calculate correction factor */
     908           0 :   correction_factor = pow(error_term, power_term);
     909             : 
     910             :   /* Clip range */
     911           0 :   correction_factor = (correction_factor < 0.05)
     912             :                           ? 0.05
     913           0 :                           : (correction_factor > 5.0) ? 5.0 : correction_factor;
     914             : 
     915           0 :   return correction_factor;
     916             : }
     917             : 
     918           0 : static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
     919             :                           int section_target_bandwitdh, int overhead_bits) {
     920             :   int Q;
     921           0 :   int num_mbs = cpi->common.MBs;
     922             :   int target_norm_bits_per_mb;
     923             : 
     924           0 :   double section_err = (fpstats->coded_error / fpstats->count);
     925           0 :   double err_per_mb = section_err / num_mbs;
     926             :   double err_correction_factor;
     927           0 :   double speed_correction = 1.0;
     928             :   int overhead_bits_per_mb;
     929             : 
     930           0 :   if (section_target_bandwitdh <= 0) {
     931           0 :     return cpi->twopass.maxq_max_limit; /* Highest value allowed */
     932             :   }
     933             : 
     934           0 :   target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
     935           0 :                                 ? (512 * section_target_bandwitdh) / num_mbs
     936           0 :                                 : 512 * (section_target_bandwitdh / num_mbs);
     937             : 
     938             :   /* Calculate a corrective factor based on a rolling ratio of bits spent
     939             :    * vs target bits
     940             :    */
     941           0 :   if ((cpi->rolling_target_bits > 0) &&
     942           0 :       (cpi->active_worst_quality < cpi->worst_quality)) {
     943             :     double rolling_ratio;
     944             : 
     945           0 :     rolling_ratio =
     946           0 :         (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
     947             : 
     948           0 :     if (rolling_ratio < 0.95) {
     949           0 :       cpi->twopass.est_max_qcorrection_factor -= 0.005;
     950           0 :     } else if (rolling_ratio > 1.05) {
     951           0 :       cpi->twopass.est_max_qcorrection_factor += 0.005;
     952             :     }
     953             : 
     954           0 :     cpi->twopass.est_max_qcorrection_factor =
     955           0 :         (cpi->twopass.est_max_qcorrection_factor < 0.1)
     956             :             ? 0.1
     957           0 :             : (cpi->twopass.est_max_qcorrection_factor > 10.0)
     958             :                   ? 10.0
     959           0 :                   : cpi->twopass.est_max_qcorrection_factor;
     960             :   }
     961             : 
     962             :   /* Corrections for higher compression speed settings
     963             :    * (reduced compression expected)
     964             :    */
     965           0 :   if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
     966           0 :     if (cpi->oxcf.cpu_used <= 5) {
     967           0 :       speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
     968             :     } else {
     969           0 :       speed_correction = 1.25;
     970             :     }
     971             :   }
     972             : 
     973             :   /* Estimate of overhead bits per mb */
     974             :   /* Correction to overhead bits for min allowed Q. */
     975           0 :   overhead_bits_per_mb = overhead_bits / num_mbs;
     976           0 :   overhead_bits_per_mb = (int)(overhead_bits_per_mb *
     977           0 :                                pow(0.98, (double)cpi->twopass.maxq_min_limit));
     978             : 
     979             :   /* Try and pick a max Q that will be high enough to encode the
     980             :    * content at the given rate.
     981             :    */
     982           0 :   for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) {
     983             :     int bits_per_mb_at_this_q;
     984             : 
     985             :     /* Error per MB based correction factor */
     986           0 :     err_correction_factor =
     987             :         calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
     988             : 
     989           0 :     bits_per_mb_at_this_q =
     990           0 :         vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
     991             : 
     992           0 :     bits_per_mb_at_this_q = (int)(.5 +
     993           0 :                                   err_correction_factor * speed_correction *
     994           0 :                                       cpi->twopass.est_max_qcorrection_factor *
     995           0 :                                       cpi->twopass.section_max_qfactor *
     996           0 :                                       (double)bits_per_mb_at_this_q);
     997             : 
     998             :     /* Mode and motion overhead */
     999             :     /* As Q rises in real encode loop rd code will force overhead down
    1000             :      * We make a crude adjustment for this here as *.98 per Q step.
    1001             :      */
    1002           0 :     overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
    1003             : 
    1004           0 :     if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
    1005             :   }
    1006             : 
    1007             :   /* Restriction on active max q for constrained quality mode. */
    1008           0 :   if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
    1009           0 :       (Q < cpi->cq_target_quality)) {
    1010           0 :     Q = cpi->cq_target_quality;
    1011             :   }
    1012             : 
    1013             :   /* Adjust maxq_min_limit and maxq_max_limit limits based on
    1014             :    * average q observed in clip for non kf/gf.arf frames
    1015             :    * Give average a chance to settle though.
    1016             :    */
    1017           0 :   if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) &&
    1018           0 :       (cpi->ni_frames > 150)) {
    1019           0 :     cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
    1020           0 :                                       ? (cpi->ni_av_qi + 32)
    1021           0 :                                       : cpi->worst_quality;
    1022           0 :     cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
    1023           0 :                                       ? (cpi->ni_av_qi - 32)
    1024           0 :                                       : cpi->best_quality;
    1025             :   }
    1026             : 
    1027           0 :   return Q;
    1028             : }
    1029             : 
    1030             : /* For cq mode estimate a cq level that matches the observed
    1031             :  * complexity and data rate.
    1032             :  */
    1033           0 : static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
    1034             :                        int section_target_bandwitdh, int overhead_bits) {
    1035             :   int Q;
    1036           0 :   int num_mbs = cpi->common.MBs;
    1037             :   int target_norm_bits_per_mb;
    1038             : 
    1039           0 :   double section_err = (fpstats->coded_error / fpstats->count);
    1040           0 :   double err_per_mb = section_err / num_mbs;
    1041             :   double err_correction_factor;
    1042           0 :   double speed_correction = 1.0;
    1043             :   double clip_iiratio;
    1044             :   double clip_iifactor;
    1045             :   int overhead_bits_per_mb;
    1046             : 
    1047             :   if (0) {
    1048             :     FILE *f = fopen("epmp.stt", "a");
    1049             :     fprintf(f, "%10.2f\n", err_per_mb);
    1050             :     fclose(f);
    1051             :   }
    1052             : 
    1053           0 :   target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
    1054           0 :                                 ? (512 * section_target_bandwitdh) / num_mbs
    1055           0 :                                 : 512 * (section_target_bandwitdh / num_mbs);
    1056             : 
    1057             :   /* Estimate of overhead bits per mb */
    1058           0 :   overhead_bits_per_mb = overhead_bits / num_mbs;
    1059             : 
    1060             :   /* Corrections for higher compression speed settings
    1061             :    * (reduced compression expected)
    1062             :    */
    1063           0 :   if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
    1064           0 :     if (cpi->oxcf.cpu_used <= 5) {
    1065           0 :       speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
    1066             :     } else {
    1067           0 :       speed_correction = 1.25;
    1068             :     }
    1069             :   }
    1070             : 
    1071             :   /* II ratio correction factor for clip as a whole */
    1072           0 :   clip_iiratio = cpi->twopass.total_stats.intra_error /
    1073           0 :                  DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
    1074           0 :   clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
    1075           0 :   if (clip_iifactor < 0.80) clip_iifactor = 0.80;
    1076             : 
    1077             :   /* Try and pick a Q that can encode the content at the given rate. */
    1078           0 :   for (Q = 0; Q < MAXQ; ++Q) {
    1079             :     int bits_per_mb_at_this_q;
    1080             : 
    1081             :     /* Error per MB based correction factor */
    1082           0 :     err_correction_factor =
    1083             :         calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q);
    1084             : 
    1085           0 :     bits_per_mb_at_this_q =
    1086           0 :         vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
    1087             : 
    1088           0 :     bits_per_mb_at_this_q =
    1089           0 :         (int)(.5 +
    1090           0 :               err_correction_factor * speed_correction * clip_iifactor *
    1091           0 :                   (double)bits_per_mb_at_this_q);
    1092             : 
    1093             :     /* Mode and motion overhead */
    1094             :     /* As Q rises in real encode loop rd code will force overhead down
    1095             :      * We make a crude adjustment for this here as *.98 per Q step.
    1096             :      */
    1097           0 :     overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
    1098             : 
    1099           0 :     if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
    1100             :   }
    1101             : 
    1102             :   /* Clip value to range "best allowed to (worst allowed - 1)" */
    1103           0 :   Q = cq_level[Q];
    1104           0 :   if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1;
    1105           0 :   if (Q < cpi->best_quality) Q = cpi->best_quality;
    1106             : 
    1107           0 :   return Q;
    1108             : }
    1109             : 
    1110           0 : static int estimate_q(VP8_COMP *cpi, double section_err,
    1111             :                       int section_target_bandwitdh) {
    1112             :   int Q;
    1113           0 :   int num_mbs = cpi->common.MBs;
    1114             :   int target_norm_bits_per_mb;
    1115             : 
    1116           0 :   double err_per_mb = section_err / num_mbs;
    1117             :   double err_correction_factor;
    1118           0 :   double speed_correction = 1.0;
    1119             : 
    1120           0 :   target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
    1121           0 :                                 ? (512 * section_target_bandwitdh) / num_mbs
    1122           0 :                                 : 512 * (section_target_bandwitdh / num_mbs);
    1123             : 
    1124             :   /* Corrections for higher compression speed settings
    1125             :    * (reduced compression expected)
    1126             :    */
    1127           0 :   if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
    1128           0 :     if (cpi->oxcf.cpu_used <= 5) {
    1129           0 :       speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
    1130             :     } else {
    1131           0 :       speed_correction = 1.25;
    1132             :     }
    1133             :   }
    1134             : 
    1135             :   /* Try and pick a Q that can encode the content at the given rate. */
    1136           0 :   for (Q = 0; Q < MAXQ; ++Q) {
    1137             :     int bits_per_mb_at_this_q;
    1138             : 
    1139             :     /* Error per MB based correction factor */
    1140           0 :     err_correction_factor =
    1141             :         calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
    1142             : 
    1143           0 :     bits_per_mb_at_this_q =
    1144           0 :         (int)(.5 + (err_correction_factor * speed_correction *
    1145           0 :                     cpi->twopass.est_max_qcorrection_factor *
    1146           0 :                     (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0));
    1147             : 
    1148           0 :     if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
    1149             :   }
    1150             : 
    1151           0 :   return Q;
    1152             : }
    1153             : 
    1154             : /* Estimate a worst case Q for a KF group */
    1155           0 : static int estimate_kf_group_q(VP8_COMP *cpi, double section_err,
    1156             :                                int section_target_bandwitdh,
    1157             :                                double group_iiratio) {
    1158             :   int Q;
    1159           0 :   int num_mbs = cpi->common.MBs;
    1160           0 :   int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
    1161             :   int bits_per_mb_at_this_q;
    1162             : 
    1163           0 :   double err_per_mb = section_err / num_mbs;
    1164             :   double err_correction_factor;
    1165           0 :   double speed_correction = 1.0;
    1166           0 :   double current_spend_ratio = 1.0;
    1167             : 
    1168           0 :   double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
    1169           0 :   double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
    1170             : 
    1171           0 :   double iiratio_correction_factor = 1.0;
    1172             : 
    1173             :   double combined_correction_factor;
    1174             : 
    1175             :   /* Trap special case where the target is <= 0 */
    1176           0 :   if (target_norm_bits_per_mb <= 0) return MAXQ * 2;
    1177             : 
    1178             :   /* Calculate a corrective factor based on a rolling ratio of bits spent
    1179             :    *  vs target bits
    1180             :    * This is clamped to the range 0.1 to 10.0
    1181             :    */
    1182           0 :   if (cpi->long_rolling_target_bits <= 0) {
    1183           0 :     current_spend_ratio = 10.0;
    1184             :   } else {
    1185           0 :     current_spend_ratio = (double)cpi->long_rolling_actual_bits /
    1186           0 :                           (double)cpi->long_rolling_target_bits;
    1187           0 :     current_spend_ratio =
    1188           0 :         (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1)
    1189             :                                                   ? 0.1
    1190           0 :                                                   : current_spend_ratio;
    1191             :   }
    1192             : 
    1193             :   /* Calculate a correction factor based on the quality of prediction in
    1194             :    * the sequence as indicated by intra_inter error score ratio (IIRatio)
    1195             :    * The idea here is to favour subsampling in the hardest sections vs
    1196             :    * the easyest.
    1197             :    */
    1198           0 :   iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
    1199             : 
    1200           0 :   if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5;
    1201             : 
    1202             :   /* Corrections for higher compression speed settings
    1203             :    * (reduced compression expected)
    1204             :    */
    1205           0 :   if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
    1206           0 :     if (cpi->oxcf.cpu_used <= 5) {
    1207           0 :       speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
    1208             :     } else {
    1209           0 :       speed_correction = 1.25;
    1210             :     }
    1211             :   }
    1212             : 
    1213             :   /* Combine the various factors calculated above */
    1214           0 :   combined_correction_factor =
    1215           0 :       speed_correction * iiratio_correction_factor * current_spend_ratio;
    1216             : 
    1217             :   /* Try and pick a Q that should be high enough to encode the content at
    1218             :    * the given rate.
    1219             :    */
    1220           0 :   for (Q = 0; Q < MAXQ; ++Q) {
    1221             :     /* Error per MB based correction factor */
    1222           0 :     err_correction_factor =
    1223             :         calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q);
    1224             : 
    1225           0 :     bits_per_mb_at_this_q =
    1226           0 :         (int)(.5 + (err_correction_factor * combined_correction_factor *
    1227           0 :                     (double)vp8_bits_per_mb[INTER_FRAME][Q]));
    1228             : 
    1229           0 :     if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
    1230             :   }
    1231             : 
    1232             :   /* If we could not hit the target even at Max Q then estimate what Q
    1233             :    * would have been required
    1234             :    */
    1235           0 :   while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) &&
    1236             :          (Q < (MAXQ * 2))) {
    1237           0 :     bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
    1238           0 :     Q++;
    1239             :   }
    1240             : 
    1241             :   if (0) {
    1242             :     FILE *f = fopen("estkf_q.stt", "a");
    1243             :     fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n",
    1244             :             cpi->common.current_video_frame, bits_per_mb_at_this_q,
    1245             :             target_norm_bits_per_mb, err_per_mb, err_correction_factor,
    1246             :             current_spend_ratio, group_iiratio, iiratio_correction_factor,
    1247             :             (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level,
    1248             :             Q);
    1249             :     fclose(f);
    1250             :   }
    1251             : 
    1252           0 :   return Q;
    1253             : }
    1254             : 
    1255           0 : void vp8_init_second_pass(VP8_COMP *cpi) {
    1256             :   FIRSTPASS_STATS this_frame;
    1257             :   FIRSTPASS_STATS *start_pos;
    1258             : 
    1259           0 :   double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
    1260           0 :                                       cpi->oxcf.two_pass_vbrmin_section / 100);
    1261             : 
    1262           0 :   zero_stats(&cpi->twopass.total_stats);
    1263           0 :   zero_stats(&cpi->twopass.total_left_stats);
    1264             : 
    1265           0 :   if (!cpi->twopass.stats_in_end) return;
    1266             : 
    1267           0 :   cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
    1268           0 :   cpi->twopass.total_left_stats = cpi->twopass.total_stats;
    1269             : 
    1270             :   /* each frame can have a different duration, as the frame rate in the
    1271             :    * source isn't guaranteed to be constant.   The frame rate prior to
    1272             :    * the first frame encoded in the second pass is a guess.  However the
    1273             :    * sum duration is not. Its calculated based on the actual durations of
    1274             :    * all frames from the first pass.
    1275             :    */
    1276           0 :   vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count /
    1277           0 :                              cpi->twopass.total_stats.duration);
    1278             : 
    1279           0 :   cpi->output_framerate = cpi->framerate;
    1280           0 :   cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration *
    1281           0 :                                      cpi->oxcf.target_bandwidth / 10000000.0);
    1282           0 :   cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration *
    1283           0 :                                       two_pass_min_rate / 10000000.0);
    1284             : 
    1285             :   /* Calculate a minimum intra value to be used in determining the IIratio
    1286             :    * scores used in the second pass. We have this minimum to make sure
    1287             :    * that clips that are static but "low complexity" in the intra domain
    1288             :    * are still boosted appropriately for KF/GF/ARF
    1289             :    */
    1290           0 :   cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
    1291           0 :   cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
    1292             : 
    1293             :   /* Scan the first pass file and calculate an average Intra / Inter error
    1294             :    * score ratio for the sequence
    1295             :    */
    1296             :   {
    1297           0 :     double sum_iiratio = 0.0;
    1298             :     double IIRatio;
    1299             : 
    1300           0 :     start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
    1301             : 
    1302           0 :     while (input_stats(cpi, &this_frame) != EOF) {
    1303           0 :       IIRatio =
    1304           0 :           this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
    1305           0 :       IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
    1306           0 :       sum_iiratio += IIRatio;
    1307             :     }
    1308             : 
    1309           0 :     cpi->twopass.avg_iiratio =
    1310           0 :         sum_iiratio /
    1311           0 :         DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
    1312             : 
    1313             :     /* Reset file position */
    1314           0 :     reset_fpf_position(cpi, start_pos);
    1315             :   }
    1316             : 
    1317             :   /* Scan the first pass file and calculate a modified total error based
    1318             :    * upon the bias/power function used to allocate bits
    1319             :    */
    1320             :   {
    1321           0 :     start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
    1322             : 
    1323           0 :     cpi->twopass.modified_error_total = 0.0;
    1324           0 :     cpi->twopass.modified_error_used = 0.0;
    1325             : 
    1326           0 :     while (input_stats(cpi, &this_frame) != EOF) {
    1327           0 :       cpi->twopass.modified_error_total +=
    1328           0 :           calculate_modified_err(cpi, &this_frame);
    1329             :     }
    1330           0 :     cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
    1331             : 
    1332           0 :     reset_fpf_position(cpi, start_pos); /* Reset file position */
    1333             :   }
    1334             : }
    1335             : 
    1336           0 : void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; }
    1337             : 
    1338             : /* This function gives and estimate of how badly we believe the prediction
    1339             :  * quality is decaying from frame to frame.
    1340             :  */
    1341           0 : static double get_prediction_decay_rate(VP8_COMP *cpi,
    1342             :                                         FIRSTPASS_STATS *next_frame) {
    1343             :   double prediction_decay_rate;
    1344             :   double motion_decay;
    1345           0 :   double motion_pct = next_frame->pcnt_motion;
    1346             :   (void)cpi;
    1347             : 
    1348             :   /* Initial basis is the % mbs inter coded */
    1349           0 :   prediction_decay_rate = next_frame->pcnt_inter;
    1350             : 
    1351             :   /* High % motion -> somewhat higher decay rate */
    1352           0 :   motion_decay = (1.0 - (motion_pct / 20.0));
    1353           0 :   if (motion_decay < prediction_decay_rate) {
    1354           0 :     prediction_decay_rate = motion_decay;
    1355             :   }
    1356             : 
    1357             :   /* Adjustment to decay rate based on speed of motion */
    1358             :   {
    1359             :     double this_mv_rabs;
    1360             :     double this_mv_cabs;
    1361             :     double distance_factor;
    1362             : 
    1363           0 :     this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
    1364           0 :     this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
    1365             : 
    1366           0 :     distance_factor =
    1367           0 :         sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) /
    1368             :         250.0;
    1369           0 :     distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor));
    1370           0 :     if (distance_factor < prediction_decay_rate) {
    1371           0 :       prediction_decay_rate = distance_factor;
    1372             :     }
    1373             :   }
    1374             : 
    1375           0 :   return prediction_decay_rate;
    1376             : }
    1377             : 
    1378             : /* Function to test for a condition where a complex transition is followed
    1379             :  * by a static section. For example in slide shows where there is a fade
    1380             :  * between slides. This is to help with more optimal kf and gf positioning.
    1381             :  */
    1382           0 : static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval,
    1383             :                                       int still_interval,
    1384             :                                       double loop_decay_rate,
    1385             :                                       double decay_accumulator) {
    1386           0 :   int trans_to_still = 0;
    1387             : 
    1388             :   /* Break clause to detect very still sections after motion
    1389             :    * For example a static image after a fade or other transition
    1390             :    * instead of a clean scene cut.
    1391             :    */
    1392           0 :   if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) &&
    1393             :       (decay_accumulator < 0.9)) {
    1394             :     int j;
    1395           0 :     FIRSTPASS_STATS *position = cpi->twopass.stats_in;
    1396             :     FIRSTPASS_STATS tmp_next_frame;
    1397             :     double decay_rate;
    1398             : 
    1399             :     /* Look ahead a few frames to see if static condition persists... */
    1400           0 :     for (j = 0; j < still_interval; ++j) {
    1401           0 :       if (EOF == input_stats(cpi, &tmp_next_frame)) break;
    1402             : 
    1403           0 :       decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame);
    1404           0 :       if (decay_rate < 0.999) break;
    1405             :     }
    1406             :     /* Reset file position */
    1407           0 :     reset_fpf_position(cpi, position);
    1408             : 
    1409             :     /* Only if it does do we signal a transition to still */
    1410           0 :     if (j == still_interval) trans_to_still = 1;
    1411             :   }
    1412             : 
    1413           0 :   return trans_to_still;
    1414             : }
    1415             : 
    1416             : /* This function detects a flash through the high relative pcnt_second_ref
    1417             :  * score in the frame following a flash frame. The offset passed in should
    1418             :  * reflect this
    1419             :  */
    1420           0 : static int detect_flash(VP8_COMP *cpi, int offset) {
    1421             :   FIRSTPASS_STATS next_frame;
    1422             : 
    1423           0 :   int flash_detected = 0;
    1424             : 
    1425             :   /* Read the frame data. */
    1426             :   /* The return is 0 (no flash detected) if not a valid frame */
    1427           0 :   if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
    1428             :     /* What we are looking for here is a situation where there is a
    1429             :      * brief break in prediction (such as a flash) but subsequent frames
    1430             :      * are reasonably well predicted by an earlier (pre flash) frame.
    1431             :      * The recovery after a flash is indicated by a high pcnt_second_ref
    1432             :      * comapred to pcnt_inter.
    1433             :      */
    1434           0 :     if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
    1435           0 :         (next_frame.pcnt_second_ref >= 0.5)) {
    1436           0 :       flash_detected = 1;
    1437             : 
    1438             :       /*if (1)
    1439             :       {
    1440             :           FILE *f = fopen("flash.stt", "a");
    1441             :           fprintf(f, "%8.0f %6.2f %6.2f\n",
    1442             :               next_frame.frame,
    1443             :               next_frame.pcnt_inter,
    1444             :               next_frame.pcnt_second_ref);
    1445             :           fclose(f);
    1446             :       }*/
    1447             :     }
    1448             :   }
    1449             : 
    1450           0 :   return flash_detected;
    1451             : }
    1452             : 
    1453             : /* Update the motion related elements to the GF arf boost calculation */
    1454           0 : static void accumulate_frame_motion_stats(VP8_COMP *cpi,
    1455             :                                           FIRSTPASS_STATS *this_frame,
    1456             :                                           double *this_frame_mv_in_out,
    1457             :                                           double *mv_in_out_accumulator,
    1458             :                                           double *abs_mv_in_out_accumulator,
    1459             :                                           double *mv_ratio_accumulator) {
    1460             :   double this_frame_mvr_ratio;
    1461             :   double this_frame_mvc_ratio;
    1462             :   double motion_pct;
    1463             :   (void)cpi;
    1464             : 
    1465             :   /* Accumulate motion stats. */
    1466           0 :   motion_pct = this_frame->pcnt_motion;
    1467             : 
    1468             :   /* Accumulate Motion In/Out of frame stats */
    1469           0 :   *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
    1470           0 :   *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
    1471           0 :   *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
    1472             : 
    1473             :   /* Accumulate a measure of how uniform (or conversely how random)
    1474             :    * the motion field is. (A ratio of absmv / mv)
    1475             :    */
    1476           0 :   if (motion_pct > 0.05) {
    1477           0 :     this_frame_mvr_ratio =
    1478           0 :         fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
    1479             : 
    1480           0 :     this_frame_mvc_ratio =
    1481           0 :         fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
    1482             : 
    1483           0 :     *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
    1484             :                                  ? (this_frame_mvr_ratio * motion_pct)
    1485           0 :                                  : this_frame->mvr_abs * motion_pct;
    1486             : 
    1487           0 :     *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs)
    1488             :                                  ? (this_frame_mvc_ratio * motion_pct)
    1489           0 :                                  : this_frame->mvc_abs * motion_pct;
    1490             :   }
    1491           0 : }
    1492             : 
    1493             : /* Calculate a baseline boost number for the current frame. */
    1494           0 : static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame,
    1495             :                                double this_frame_mv_in_out) {
    1496             :   double frame_boost;
    1497             : 
    1498             :   /* Underlying boost factor is based on inter intra error ratio */
    1499           0 :   if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) {
    1500           0 :     frame_boost = (IIFACTOR * this_frame->intra_error /
    1501           0 :                    DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
    1502             :   } else {
    1503           0 :     frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
    1504           0 :                    DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
    1505             :   }
    1506             : 
    1507             :   /* Increase boost for frames where new data coming into frame
    1508             :    * (eg zoom out). Slightly reduce boost if there is a net balance
    1509             :    * of motion out of the frame (zoom in).
    1510             :    * The range for this_frame_mv_in_out is -1.0 to +1.0
    1511             :    */
    1512           0 :   if (this_frame_mv_in_out > 0.0) {
    1513           0 :     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
    1514             :     /* In extreme case boost is halved */
    1515             :   } else {
    1516           0 :     frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
    1517             :   }
    1518             : 
    1519             :   /* Clip to maximum */
    1520           0 :   if (frame_boost > GF_RMAX) frame_boost = GF_RMAX;
    1521             : 
    1522           0 :   return frame_boost;
    1523             : }
    1524             : 
    1525             : #if NEW_BOOST
    1526           0 : static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames,
    1527             :                           int *f_boost, int *b_boost) {
    1528             :   FIRSTPASS_STATS this_frame;
    1529             : 
    1530             :   int i;
    1531           0 :   double boost_score = 0.0;
    1532           0 :   double mv_ratio_accumulator = 0.0;
    1533           0 :   double decay_accumulator = 1.0;
    1534           0 :   double this_frame_mv_in_out = 0.0;
    1535           0 :   double mv_in_out_accumulator = 0.0;
    1536           0 :   double abs_mv_in_out_accumulator = 0.0;
    1537             :   double r;
    1538           0 :   int flash_detected = 0;
    1539             : 
    1540             :   /* Search forward from the proposed arf/next gf position */
    1541           0 :   for (i = 0; i < f_frames; ++i) {
    1542           0 :     if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
    1543             : 
    1544             :     /* Update the motion related elements to the boost calculation */
    1545           0 :     accumulate_frame_motion_stats(
    1546             :         cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
    1547             :         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
    1548             : 
    1549             :     /* Calculate the baseline boost number for this frame */
    1550           0 :     r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
    1551             : 
    1552             :     /* We want to discount the the flash frame itself and the recovery
    1553             :      * frame that follows as both will have poor scores.
    1554             :      */
    1555           0 :     flash_detected =
    1556           0 :         detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
    1557             : 
    1558             :     /* Cumulative effect of prediction quality decay */
    1559           0 :     if (!flash_detected) {
    1560           0 :       decay_accumulator =
    1561           0 :           decay_accumulator * get_prediction_decay_rate(cpi, &this_frame);
    1562           0 :       decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
    1563             :     }
    1564           0 :     boost_score += (decay_accumulator * r);
    1565             : 
    1566             :     /* Break out conditions. */
    1567           0 :     if ((!flash_detected) &&
    1568           0 :         ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
    1569           0 :          (mv_in_out_accumulator < -2.0))) {
    1570             :       break;
    1571             :     }
    1572             :   }
    1573             : 
    1574           0 :   *f_boost = (int)(boost_score * 100.0) >> 4;
    1575             : 
    1576             :   /* Reset for backward looking loop */
    1577           0 :   boost_score = 0.0;
    1578           0 :   mv_ratio_accumulator = 0.0;
    1579           0 :   decay_accumulator = 1.0;
    1580           0 :   this_frame_mv_in_out = 0.0;
    1581           0 :   mv_in_out_accumulator = 0.0;
    1582           0 :   abs_mv_in_out_accumulator = 0.0;
    1583             : 
    1584             :   /* Search forward from the proposed arf/next gf position */
    1585           0 :   for (i = -1; i >= -b_frames; i--) {
    1586           0 :     if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
    1587             : 
    1588             :     /* Update the motion related elements to the boost calculation */
    1589           0 :     accumulate_frame_motion_stats(
    1590             :         cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
    1591             :         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
    1592             : 
    1593             :     /* Calculate the baseline boost number for this frame */
    1594           0 :     r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
    1595             : 
    1596             :     /* We want to discount the the flash frame itself and the recovery
    1597             :      * frame that follows as both will have poor scores.
    1598             :      */
    1599           0 :     flash_detected =
    1600           0 :         detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
    1601             : 
    1602             :     /* Cumulative effect of prediction quality decay */
    1603           0 :     if (!flash_detected) {
    1604           0 :       decay_accumulator =
    1605           0 :           decay_accumulator * get_prediction_decay_rate(cpi, &this_frame);
    1606           0 :       decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
    1607             :     }
    1608             : 
    1609           0 :     boost_score += (decay_accumulator * r);
    1610             : 
    1611             :     /* Break out conditions. */
    1612           0 :     if ((!flash_detected) &&
    1613           0 :         ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
    1614           0 :          (mv_in_out_accumulator < -2.0))) {
    1615             :       break;
    1616             :     }
    1617             :   }
    1618           0 :   *b_boost = (int)(boost_score * 100.0) >> 4;
    1619             : 
    1620           0 :   return (*f_boost + *b_boost);
    1621             : }
    1622             : #endif
    1623             : 
    1624             : /* Analyse and define a gf/arf group . */
    1625           0 : static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
    1626             :   FIRSTPASS_STATS next_frame;
    1627             :   FIRSTPASS_STATS *start_pos;
    1628             :   int i;
    1629             :   double r;
    1630           0 :   double boost_score = 0.0;
    1631           0 :   double old_boost_score = 0.0;
    1632           0 :   double gf_group_err = 0.0;
    1633           0 :   double gf_first_frame_err = 0.0;
    1634           0 :   double mod_frame_err = 0.0;
    1635             : 
    1636           0 :   double mv_ratio_accumulator = 0.0;
    1637           0 :   double decay_accumulator = 1.0;
    1638             : 
    1639           0 :   double loop_decay_rate = 1.00; /* Starting decay rate */
    1640             : 
    1641           0 :   double this_frame_mv_in_out = 0.0;
    1642           0 :   double mv_in_out_accumulator = 0.0;
    1643           0 :   double abs_mv_in_out_accumulator = 0.0;
    1644           0 :   double mod_err_per_mb_accumulator = 0.0;
    1645             : 
    1646           0 :   int max_bits = frame_max_bits(cpi); /* Max for a single frame */
    1647             : 
    1648           0 :   unsigned int allow_alt_ref =
    1649           0 :       cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
    1650             : 
    1651           0 :   int alt_boost = 0;
    1652           0 :   int f_boost = 0;
    1653           0 :   int b_boost = 0;
    1654             :   int flash_detected;
    1655             : 
    1656           0 :   cpi->twopass.gf_group_bits = 0;
    1657           0 :   cpi->twopass.gf_decay_rate = 0;
    1658             : 
    1659           0 :   vpx_clear_system_state();
    1660             : 
    1661           0 :   start_pos = cpi->twopass.stats_in;
    1662             : 
    1663           0 :   memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */
    1664             : 
    1665             :   /* Load stats for the current frame. */
    1666           0 :   mod_frame_err = calculate_modified_err(cpi, this_frame);
    1667             : 
    1668             :   /* Note the error of the frame at the start of the group (this will be
    1669             :    * the GF frame error if we code a normal gf
    1670             :    */
    1671           0 :   gf_first_frame_err = mod_frame_err;
    1672             : 
    1673             :   /* Special treatment if the current frame is a key frame (which is also
    1674             :    * a gf). If it is then its error score (and hence bit allocation) need
    1675             :    * to be subtracted out from the calculation for the GF group
    1676             :    */
    1677           0 :   if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err;
    1678             : 
    1679             :   /* Scan forward to try and work out how many frames the next gf group
    1680             :    * should contain and what level of boost is appropriate for the GF
    1681             :    * or ARF that will be coded with the group
    1682             :    */
    1683           0 :   i = 0;
    1684             : 
    1685           0 :   while (((i < cpi->twopass.static_scene_max_gf_interval) ||
    1686           0 :           ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
    1687           0 :          (i < cpi->twopass.frames_to_key)) {
    1688           0 :     i++;
    1689             : 
    1690             :     /* Accumulate error score of frames in this gf group */
    1691           0 :     mod_frame_err = calculate_modified_err(cpi, this_frame);
    1692             : 
    1693           0 :     gf_group_err += mod_frame_err;
    1694             : 
    1695           0 :     mod_err_per_mb_accumulator +=
    1696           0 :         mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
    1697             : 
    1698           0 :     if (EOF == input_stats(cpi, &next_frame)) break;
    1699             : 
    1700             :     /* Test for the case where there is a brief flash but the prediction
    1701             :      * quality back to an earlier frame is then restored.
    1702             :      */
    1703           0 :     flash_detected = detect_flash(cpi, 0);
    1704             : 
    1705             :     /* Update the motion related elements to the boost calculation */
    1706           0 :     accumulate_frame_motion_stats(
    1707             :         cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
    1708             :         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
    1709             : 
    1710             :     /* Calculate a baseline boost number for this frame */
    1711           0 :     r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out);
    1712             : 
    1713             :     /* Cumulative effect of prediction quality decay */
    1714           0 :     if (!flash_detected) {
    1715           0 :       loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
    1716           0 :       decay_accumulator = decay_accumulator * loop_decay_rate;
    1717           0 :       decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
    1718             :     }
    1719           0 :     boost_score += (decay_accumulator * r);
    1720             : 
    1721             :     /* Break clause to detect very still sections after motion
    1722             :      * For example a staic image after a fade or other transition.
    1723             :      */
    1724           0 :     if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
    1725             :                                    decay_accumulator)) {
    1726           0 :       allow_alt_ref = 0;
    1727           0 :       boost_score = old_boost_score;
    1728           0 :       break;
    1729             :     }
    1730             : 
    1731             :     /* Break out conditions. */
    1732           0 :     if (
    1733             :         /* Break at cpi->max_gf_interval unless almost totally static */
    1734           0 :         (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
    1735             :         (
    1736             :             /* Dont break out with a very short interval */
    1737           0 :             (i > MIN_GF_INTERVAL) &&
    1738             :             /* Dont break out very close to a key frame */
    1739           0 :             ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
    1740           0 :             ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
    1741           0 :             (!flash_detected) && ((mv_ratio_accumulator > 100.0) ||
    1742           0 :                                   (abs_mv_in_out_accumulator > 3.0) ||
    1743           0 :                                   (mv_in_out_accumulator < -2.0) ||
    1744           0 :                                   ((boost_score - old_boost_score) < 2.0)))) {
    1745           0 :       boost_score = old_boost_score;
    1746           0 :       break;
    1747             :     }
    1748             : 
    1749           0 :     memcpy(this_frame, &next_frame, sizeof(*this_frame));
    1750             : 
    1751           0 :     old_boost_score = boost_score;
    1752             :   }
    1753             : 
    1754           0 :   cpi->twopass.gf_decay_rate =
    1755           0 :       (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
    1756             : 
    1757             :   /* When using CBR apply additional buffer related upper limits */
    1758           0 :   if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    1759             :     double max_boost;
    1760             : 
    1761             :     /* For cbr apply buffer related limits */
    1762           0 :     if (cpi->drop_frames_allowed) {
    1763           0 :       int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark *
    1764           0 :                                 (cpi->oxcf.optimal_buffer_level / 100);
    1765             : 
    1766           0 :       if (cpi->buffer_level > df_buffer_level) {
    1767           0 :         max_boost =
    1768           0 :             ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
    1769           0 :             DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
    1770             :       } else {
    1771           0 :         max_boost = 0.0;
    1772             :       }
    1773           0 :     } else if (cpi->buffer_level > 0) {
    1774           0 :       max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
    1775           0 :                   DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
    1776             :     } else {
    1777           0 :       max_boost = 0.0;
    1778             :     }
    1779             : 
    1780           0 :     if (boost_score > max_boost) boost_score = max_boost;
    1781             :   }
    1782             : 
    1783             :   /* Dont allow conventional gf too near the next kf */
    1784           0 :   if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
    1785           0 :     while (i < cpi->twopass.frames_to_key) {
    1786           0 :       i++;
    1787             : 
    1788           0 :       if (EOF == input_stats(cpi, this_frame)) break;
    1789             : 
    1790           0 :       if (i < cpi->twopass.frames_to_key) {
    1791           0 :         mod_frame_err = calculate_modified_err(cpi, this_frame);
    1792           0 :         gf_group_err += mod_frame_err;
    1793             :       }
    1794             :     }
    1795             :   }
    1796             : 
    1797           0 :   cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
    1798             : 
    1799             : #if NEW_BOOST
    1800             :   /* Alterrnative boost calculation for alt ref */
    1801           0 :   alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
    1802             : #endif
    1803             : 
    1804             :   /* Should we use the alternate refernce frame */
    1805           0 :   if (allow_alt_ref && (i >= MIN_GF_INTERVAL) &&
    1806             :       /* dont use ARF very near next kf */
    1807           0 :       (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
    1808             : #if NEW_BOOST
    1809           0 :       ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) &&
    1810           0 :       ((mv_in_out_accumulator / (double)i > -0.2) ||
    1811           0 :        (mv_in_out_accumulator > -2.0)) &&
    1812           0 :       (b_boost > 100) && (f_boost > 100))
    1813             : #else
    1814             :       (next_frame.pcnt_inter > 0.75) &&
    1815             :       ((mv_in_out_accumulator / (double)i > -0.2) ||
    1816             :        (mv_in_out_accumulator > -2.0)) &&
    1817             :       (cpi->gfu_boost > 100) && (cpi->twopass.gf_decay_rate <=
    1818             :                                  (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))))
    1819             : #endif
    1820           0 :   {
    1821             :     int Boost;
    1822             :     int allocation_chunks;
    1823           0 :     int Q =
    1824           0 :         (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
    1825             :     int tmp_q;
    1826           0 :     int arf_frame_bits = 0;
    1827             :     int group_bits;
    1828             : 
    1829             : #if NEW_BOOST
    1830           0 :     cpi->gfu_boost = alt_boost;
    1831             : #endif
    1832             : 
    1833             :     /* Estimate the bits to be allocated to the group as a whole */
    1834           0 :     if ((cpi->twopass.kf_group_bits > 0) &&
    1835           0 :         (cpi->twopass.kf_group_error_left > 0)) {
    1836           0 :       group_bits =
    1837           0 :           (int)((double)cpi->twopass.kf_group_bits *
    1838           0 :                 (gf_group_err / (double)cpi->twopass.kf_group_error_left));
    1839             :     } else {
    1840           0 :       group_bits = 0;
    1841             :     }
    1842             : 
    1843             : /* Boost for arf frame */
    1844             : #if NEW_BOOST
    1845           0 :     Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
    1846             : #else
    1847             :     Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
    1848             : #endif
    1849           0 :     Boost += (i * 50);
    1850             : 
    1851             :     /* Set max and minimum boost and hence minimum allocation */
    1852           0 :     if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
    1853           0 :       Boost = ((cpi->baseline_gf_interval + 1) * 200);
    1854           0 :     } else if (Boost < 125) {
    1855           0 :       Boost = 125;
    1856             :     }
    1857             : 
    1858           0 :     allocation_chunks = (i * 100) + Boost;
    1859             : 
    1860             :     /* Normalize Altboost and allocations chunck down to prevent overflow */
    1861           0 :     while (Boost > 1000) {
    1862           0 :       Boost /= 2;
    1863           0 :       allocation_chunks /= 2;
    1864             :     }
    1865             : 
    1866             :     /* Calculate the number of bits to be spent on the arf based on the
    1867             :      * boost number
    1868             :      */
    1869           0 :     arf_frame_bits =
    1870           0 :         (int)((double)Boost * (group_bits / (double)allocation_chunks));
    1871             : 
    1872             :     /* Estimate if there are enough bits available to make worthwhile use
    1873             :      * of an arf.
    1874             :      */
    1875           0 :     tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits);
    1876             : 
    1877             :     /* Only use an arf if it is likely we will be able to code
    1878             :      * it at a lower Q than the surrounding frames.
    1879             :      */
    1880           0 :     if (tmp_q < cpi->worst_quality) {
    1881             :       int half_gf_int;
    1882             :       int frames_after_arf;
    1883           0 :       int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
    1884           0 :       int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
    1885             : 
    1886           0 :       cpi->source_alt_ref_pending = 1;
    1887             : 
    1888             :       /*
    1889             :        * For alt ref frames the error score for the end frame of the
    1890             :        * group (the alt ref frame) should not contribute to the group
    1891             :        * total and hence the number of bit allocated to the group.
    1892             :        * Rather it forms part of the next group (it is the GF at the
    1893             :        * start of the next group)
    1894             :        * gf_group_err -= mod_frame_err;
    1895             :        *
    1896             :        * For alt ref frames alt ref frame is technically part of the
    1897             :        * GF frame for the next group but we always base the error
    1898             :        * calculation and bit allocation on the current group of frames.
    1899             :        *
    1900             :        * Set the interval till the next gf or arf.
    1901             :        * For ARFs this is the number of frames to be coded before the
    1902             :        * future frame that is coded as an ARF.
    1903             :        * The future frame itself is part of the next group
    1904             :        */
    1905           0 :       cpi->baseline_gf_interval = i;
    1906             : 
    1907             :       /*
    1908             :        * Define the arnr filter width for this group of frames:
    1909             :        * We only filter frames that lie within a distance of half
    1910             :        * the GF interval from the ARF frame. We also have to trap
    1911             :        * cases where the filter extends beyond the end of clip.
    1912             :        * Note: this_frame->frame has been updated in the loop
    1913             :        * so it now points at the ARF frame.
    1914             :        */
    1915           0 :       half_gf_int = cpi->baseline_gf_interval >> 1;
    1916           0 :       frames_after_arf =
    1917           0 :           (int)(cpi->twopass.total_stats.count - this_frame->frame - 1);
    1918             : 
    1919           0 :       switch (cpi->oxcf.arnr_type) {
    1920             :         case 1: /* Backward filter */
    1921           0 :           frames_fwd = 0;
    1922           0 :           if (frames_bwd > half_gf_int) frames_bwd = half_gf_int;
    1923           0 :           break;
    1924             : 
    1925             :         case 2: /* Forward filter */
    1926           0 :           if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
    1927           0 :           if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
    1928           0 :           frames_bwd = 0;
    1929           0 :           break;
    1930             : 
    1931             :         case 3: /* Centered filter */
    1932             :         default:
    1933           0 :           frames_fwd >>= 1;
    1934           0 :           if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
    1935           0 :           if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
    1936             : 
    1937           0 :           frames_bwd = frames_fwd;
    1938             : 
    1939             :           /* For even length filter there is one more frame backward
    1940             :            * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
    1941             :            */
    1942           0 :           if (frames_bwd < half_gf_int) {
    1943           0 :             frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
    1944             :           }
    1945           0 :           break;
    1946             :       }
    1947             : 
    1948           0 :       cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
    1949             :     } else {
    1950           0 :       cpi->source_alt_ref_pending = 0;
    1951           0 :       cpi->baseline_gf_interval = i;
    1952             :     }
    1953             :   } else {
    1954           0 :     cpi->source_alt_ref_pending = 0;
    1955           0 :     cpi->baseline_gf_interval = i;
    1956             :   }
    1957             : 
    1958             :   /*
    1959             :    * Now decide how many bits should be allocated to the GF group as  a
    1960             :    * proportion of those remaining in the kf group.
    1961             :    * The final key frame group in the clip is treated as a special case
    1962             :    * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
    1963             :    * This is also important for short clips where there may only be one
    1964             :    * key frame.
    1965             :    */
    1966           0 :   if (cpi->twopass.frames_to_key >=
    1967           0 :       (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) {
    1968           0 :     cpi->twopass.kf_group_bits =
    1969           0 :         (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
    1970             :   }
    1971             : 
    1972             :   /* Calculate the bits to be allocated to the group as a whole */
    1973           0 :   if ((cpi->twopass.kf_group_bits > 0) &&
    1974           0 :       (cpi->twopass.kf_group_error_left > 0)) {
    1975           0 :     cpi->twopass.gf_group_bits =
    1976           0 :         (int64_t)(cpi->twopass.kf_group_bits *
    1977           0 :                   (gf_group_err / cpi->twopass.kf_group_error_left));
    1978             :   } else {
    1979           0 :     cpi->twopass.gf_group_bits = 0;
    1980             :   }
    1981             : 
    1982           0 :   cpi->twopass.gf_group_bits =
    1983           0 :       (cpi->twopass.gf_group_bits < 0)
    1984             :           ? 0
    1985           0 :           : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
    1986           0 :                 ? cpi->twopass.kf_group_bits
    1987           0 :                 : cpi->twopass.gf_group_bits;
    1988             : 
    1989             :   /* Clip cpi->twopass.gf_group_bits based on user supplied data rate
    1990             :    * variability limit (cpi->oxcf.two_pass_vbrmax_section)
    1991             :    */
    1992           0 :   if (cpi->twopass.gf_group_bits >
    1993           0 :       (int64_t)max_bits * cpi->baseline_gf_interval) {
    1994           0 :     cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval;
    1995             :   }
    1996             : 
    1997             :   /* Reset the file position */
    1998           0 :   reset_fpf_position(cpi, start_pos);
    1999             : 
    2000             :   /* Update the record of error used so far (only done once per gf group) */
    2001           0 :   cpi->twopass.modified_error_used += gf_group_err;
    2002             : 
    2003             :   /* Assign  bits to the arf or gf. */
    2004           0 :   for (i = 0; i <= (cpi->source_alt_ref_pending &&
    2005           0 :                     cpi->common.frame_type != KEY_FRAME);
    2006           0 :        i++) {
    2007             :     int Boost;
    2008             :     int allocation_chunks;
    2009           0 :     int Q =
    2010           0 :         (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
    2011             :     int gf_bits;
    2012             : 
    2013             :     /* For ARF frames */
    2014           0 :     if (cpi->source_alt_ref_pending && i == 0) {
    2015             : #if NEW_BOOST
    2016           0 :       Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
    2017             : #else
    2018             :       Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
    2019             : #endif
    2020           0 :       Boost += (cpi->baseline_gf_interval * 50);
    2021             : 
    2022             :       /* Set max and minimum boost and hence minimum allocation */
    2023           0 :       if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
    2024           0 :         Boost = ((cpi->baseline_gf_interval + 1) * 200);
    2025           0 :       } else if (Boost < 125) {
    2026           0 :         Boost = 125;
    2027             :       }
    2028             : 
    2029           0 :       allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost;
    2030             :     }
    2031             :     /* Else for standard golden frames */
    2032             :     else {
    2033             :       /* boost based on inter / intra ratio of subsequent frames */
    2034           0 :       Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
    2035             : 
    2036             :       /* Set max and minimum boost and hence minimum allocation */
    2037           0 :       if (Boost > (cpi->baseline_gf_interval * 150)) {
    2038           0 :         Boost = (cpi->baseline_gf_interval * 150);
    2039           0 :       } else if (Boost < 125) {
    2040           0 :         Boost = 125;
    2041             :       }
    2042             : 
    2043           0 :       allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100);
    2044             :     }
    2045             : 
    2046             :     /* Normalize Altboost and allocations chunck down to prevent overflow */
    2047           0 :     while (Boost > 1000) {
    2048           0 :       Boost /= 2;
    2049           0 :       allocation_chunks /= 2;
    2050             :     }
    2051             : 
    2052             :     /* Calculate the number of bits to be spent on the gf or arf based on
    2053             :      * the boost number
    2054             :      */
    2055           0 :     gf_bits = (int)((double)Boost *
    2056           0 :                     (cpi->twopass.gf_group_bits / (double)allocation_chunks));
    2057             : 
    2058             :     /* If the frame that is to be boosted is simpler than the average for
    2059             :      * the gf/arf group then use an alternative calculation
    2060             :      * based on the error score of the frame itself
    2061             :      */
    2062           0 :     if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
    2063             :       double alt_gf_grp_bits;
    2064             :       int alt_gf_bits;
    2065             : 
    2066           0 :       alt_gf_grp_bits =
    2067           0 :           (double)cpi->twopass.kf_group_bits *
    2068           0 :           (mod_frame_err * (double)cpi->baseline_gf_interval) /
    2069           0 :           DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
    2070             : 
    2071           0 :       alt_gf_bits =
    2072           0 :           (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks));
    2073             : 
    2074           0 :       if (gf_bits > alt_gf_bits) {
    2075           0 :         gf_bits = alt_gf_bits;
    2076             :       }
    2077             :     }
    2078             :     /* Else if it is harder than other frames in the group make sure it at
    2079             :      * least receives an allocation in keeping with its relative error
    2080             :      * score, otherwise it may be worse off than an "un-boosted" frame
    2081             :      */
    2082             :     else {
    2083           0 :       int alt_gf_bits =
    2084           0 :           (int)((double)cpi->twopass.kf_group_bits * mod_frame_err /
    2085           0 :                 DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));
    2086             : 
    2087           0 :       if (alt_gf_bits > gf_bits) {
    2088           0 :         gf_bits = alt_gf_bits;
    2089             :       }
    2090             :     }
    2091             : 
    2092             :     /* Apply an additional limit for CBR */
    2093           0 :     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    2094           0 :       if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) {
    2095           0 :         cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1);
    2096             :       }
    2097             :     }
    2098             : 
    2099             :     /* Dont allow a negative value for gf_bits */
    2100           0 :     if (gf_bits < 0) gf_bits = 0;
    2101             : 
    2102             :     /* Add in minimum for a frame */
    2103           0 :     gf_bits += cpi->min_frame_bandwidth;
    2104             : 
    2105           0 :     if (i == 0) {
    2106           0 :       cpi->twopass.gf_bits = gf_bits;
    2107             :     }
    2108           0 :     if (i == 1 || (!cpi->source_alt_ref_pending &&
    2109           0 :                    (cpi->common.frame_type != KEY_FRAME))) {
    2110             :       /* Per frame bit target for this frame */
    2111           0 :       cpi->per_frame_bandwidth = gf_bits;
    2112             :     }
    2113             :   }
    2114             : 
    2115             :   {
    2116             :     /* Adjust KF group bits and error remainin */
    2117           0 :     cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
    2118           0 :     cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
    2119             : 
    2120           0 :     if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
    2121             : 
    2122             :     /* Note the error score left in the remaining frames of the group.
    2123             :      * For normal GFs we want to remove the error score for the first
    2124             :      * frame of the group (except in Key frame case where this has
    2125             :      * already happened)
    2126             :      */
    2127           0 :     if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) {
    2128           0 :       cpi->twopass.gf_group_error_left =
    2129           0 :           (int)(gf_group_err - gf_first_frame_err);
    2130             :     } else {
    2131           0 :       cpi->twopass.gf_group_error_left = (int)gf_group_err;
    2132             :     }
    2133             : 
    2134           0 :     cpi->twopass.gf_group_bits -=
    2135           0 :         cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
    2136             : 
    2137           0 :     if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
    2138             : 
    2139             :     /* This condition could fail if there are two kfs very close together
    2140             :      * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
    2141             :      * calculation of cpi->twopass.alt_extra_bits.
    2142             :      */
    2143           0 :     if (cpi->baseline_gf_interval >= 3) {
    2144             : #if NEW_BOOST
    2145           0 :       int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost;
    2146             : #else
    2147             :       int boost = cpi->gfu_boost;
    2148             : #endif
    2149           0 :       if (boost >= 150) {
    2150             :         int pct_extra;
    2151             : 
    2152           0 :         pct_extra = (boost - 100) / 50;
    2153           0 :         pct_extra = (pct_extra > 20) ? 20 : pct_extra;
    2154             : 
    2155           0 :         cpi->twopass.alt_extra_bits =
    2156           0 :             (int)(cpi->twopass.gf_group_bits * pct_extra) / 100;
    2157           0 :         cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
    2158           0 :         cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1);
    2159             :       } else {
    2160           0 :         cpi->twopass.alt_extra_bits = 0;
    2161             :       }
    2162             :     } else {
    2163           0 :       cpi->twopass.alt_extra_bits = 0;
    2164             :     }
    2165             :   }
    2166             : 
    2167             :   /* Adjustments based on a measure of complexity of the section */
    2168           0 :   if (cpi->common.frame_type != KEY_FRAME) {
    2169             :     FIRSTPASS_STATS sectionstats;
    2170             :     double Ratio;
    2171             : 
    2172           0 :     zero_stats(&sectionstats);
    2173           0 :     reset_fpf_position(cpi, start_pos);
    2174             : 
    2175           0 :     for (i = 0; i < cpi->baseline_gf_interval; ++i) {
    2176           0 :       input_stats(cpi, &next_frame);
    2177           0 :       accumulate_stats(&sectionstats, &next_frame);
    2178             :     }
    2179             : 
    2180           0 :     avg_stats(&sectionstats);
    2181             : 
    2182           0 :     cpi->twopass.section_intra_rating =
    2183           0 :         (unsigned int)(sectionstats.intra_error /
    2184           0 :                        DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
    2185             : 
    2186           0 :     Ratio = sectionstats.intra_error /
    2187           0 :             DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
    2188           0 :     cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
    2189             : 
    2190           0 :     if (cpi->twopass.section_max_qfactor < 0.80) {
    2191           0 :       cpi->twopass.section_max_qfactor = 0.80;
    2192             :     }
    2193             : 
    2194           0 :     reset_fpf_position(cpi, start_pos);
    2195             :   }
    2196           0 : }
    2197             : 
    2198             : /* Allocate bits to a normal frame that is neither a gf an arf or a key frame.
    2199             :  */
    2200           0 : static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
    2201             :   int target_frame_size;
    2202             : 
    2203             :   double modified_err;
    2204             :   double err_fraction;
    2205             : 
    2206           0 :   int max_bits = frame_max_bits(cpi); /* Max for a single frame */
    2207             : 
    2208             :   /* Calculate modified prediction error used in bit allocation */
    2209           0 :   modified_err = calculate_modified_err(cpi, this_frame);
    2210             : 
    2211             :   /* What portion of the remaining GF group error is used by this frame */
    2212           0 :   if (cpi->twopass.gf_group_error_left > 0) {
    2213           0 :     err_fraction = modified_err / cpi->twopass.gf_group_error_left;
    2214             :   } else {
    2215           0 :     err_fraction = 0.0;
    2216             :   }
    2217             : 
    2218             :   /* How many of those bits available for allocation should we give it? */
    2219           0 :   target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
    2220             : 
    2221             :   /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits)
    2222             :    * at the top end.
    2223             :    */
    2224           0 :   if (target_frame_size < 0) {
    2225           0 :     target_frame_size = 0;
    2226             :   } else {
    2227           0 :     if (target_frame_size > max_bits) target_frame_size = max_bits;
    2228             : 
    2229           0 :     if (target_frame_size > cpi->twopass.gf_group_bits) {
    2230           0 :       target_frame_size = (int)cpi->twopass.gf_group_bits;
    2231             :     }
    2232             :   }
    2233             : 
    2234             :   /* Adjust error and bits remaining */
    2235           0 :   cpi->twopass.gf_group_error_left -= (int)modified_err;
    2236           0 :   cpi->twopass.gf_group_bits -= target_frame_size;
    2237             : 
    2238           0 :   if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
    2239             : 
    2240             :   /* Add in the minimum number of bits that is set aside for every frame. */
    2241           0 :   target_frame_size += cpi->min_frame_bandwidth;
    2242             : 
    2243             :   /* Every other frame gets a few extra bits */
    2244           0 :   if ((cpi->frames_since_golden & 0x01) &&
    2245           0 :       (cpi->frames_till_gf_update_due > 0)) {
    2246           0 :     target_frame_size += cpi->twopass.alt_extra_bits;
    2247             :   }
    2248             : 
    2249             :   /* Per frame bit target for this frame */
    2250           0 :   cpi->per_frame_bandwidth = target_frame_size;
    2251           0 : }
    2252             : 
    2253           0 : void vp8_second_pass(VP8_COMP *cpi) {
    2254             :   int tmp_q;
    2255           0 :   int frames_left =
    2256           0 :       (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
    2257             : 
    2258             :   FIRSTPASS_STATS this_frame;
    2259             :   FIRSTPASS_STATS this_frame_copy;
    2260             : 
    2261             :   double this_frame_intra_error;
    2262             :   double this_frame_coded_error;
    2263             : 
    2264             :   int overhead_bits;
    2265             : 
    2266           0 :   vp8_zero(this_frame);
    2267             : 
    2268           0 :   if (!cpi->twopass.stats_in) {
    2269           0 :     return;
    2270             :   }
    2271             : 
    2272           0 :   vpx_clear_system_state();
    2273             : 
    2274           0 :   if (EOF == input_stats(cpi, &this_frame)) return;
    2275             : 
    2276           0 :   this_frame_intra_error = this_frame.intra_error;
    2277           0 :   this_frame_coded_error = this_frame.coded_error;
    2278             : 
    2279             :   /* keyframe and section processing ! */
    2280           0 :   if (cpi->twopass.frames_to_key == 0) {
    2281             :     /* Define next KF group and assign bits to it */
    2282           0 :     memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
    2283           0 :     find_next_key_frame(cpi, &this_frame_copy);
    2284             : 
    2285             :     /* Special case: Error error_resilient_mode mode does not make much
    2286             :      * sense for two pass but with its current meaning this code is
    2287             :      * designed to stop outlandish behaviour if someone does set it when
    2288             :      * using two pass. It effectively disables GF groups. This is
    2289             :      * temporary code until we decide what should really happen in this
    2290             :      * case.
    2291             :      */
    2292           0 :     if (cpi->oxcf.error_resilient_mode) {
    2293           0 :       cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits;
    2294           0 :       cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left;
    2295           0 :       cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
    2296           0 :       cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
    2297           0 :       cpi->source_alt_ref_pending = 0;
    2298             :     }
    2299             :   }
    2300             : 
    2301             :   /* Is this a GF / ARF (Note that a KF is always also a GF) */
    2302           0 :   if (cpi->frames_till_gf_update_due == 0) {
    2303             :     /* Define next gf group and assign bits to it */
    2304           0 :     memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
    2305           0 :     define_gf_group(cpi, &this_frame_copy);
    2306             : 
    2307             :     /* If we are going to code an altref frame at the end of the group
    2308             :      * and the current frame is not a key frame.... If the previous
    2309             :      * group used an arf this frame has already benefited from that arf
    2310             :      * boost and it should not be given extra bits If the previous
    2311             :      * group was NOT coded using arf we may want to apply some boost to
    2312             :      * this GF as well
    2313             :      */
    2314           0 :     if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
    2315             :       /* Assign a standard frames worth of bits from those allocated
    2316             :        * to the GF group
    2317             :        */
    2318           0 :       int bak = cpi->per_frame_bandwidth;
    2319           0 :       memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
    2320           0 :       assign_std_frame_bits(cpi, &this_frame_copy);
    2321           0 :       cpi->per_frame_bandwidth = bak;
    2322             :     }
    2323             :   }
    2324             : 
    2325             :   /* Otherwise this is an ordinary frame */
    2326             :   else {
    2327             :     /* Special case: Error error_resilient_mode mode does not make much
    2328             :      * sense for two pass but with its current meaning but this code is
    2329             :      * designed to stop outlandish behaviour if someone does set it
    2330             :      * when using two pass. It effectively disables GF groups. This is
    2331             :      * temporary code till we decide what should really happen in this
    2332             :      * case.
    2333             :      */
    2334           0 :     if (cpi->oxcf.error_resilient_mode) {
    2335           0 :       cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key;
    2336             : 
    2337           0 :       if (cpi->common.frame_type != KEY_FRAME) {
    2338             :         /* Assign bits from those allocated to the GF group */
    2339           0 :         memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
    2340           0 :         assign_std_frame_bits(cpi, &this_frame_copy);
    2341             :       }
    2342             :     } else {
    2343             :       /* Assign bits from those allocated to the GF group */
    2344           0 :       memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
    2345           0 :       assign_std_frame_bits(cpi, &this_frame_copy);
    2346             :     }
    2347             :   }
    2348             : 
    2349             :   /* Keep a globally available copy of this and the next frame's iiratio. */
    2350           0 :   cpi->twopass.this_iiratio =
    2351           0 :       (unsigned int)(this_frame_intra_error /
    2352           0 :                      DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
    2353             :   {
    2354             :     FIRSTPASS_STATS next_frame;
    2355           0 :     if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
    2356           0 :       cpi->twopass.next_iiratio =
    2357           0 :           (unsigned int)(next_frame.intra_error /
    2358           0 :                          DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
    2359             :     }
    2360             :   }
    2361             : 
    2362             :   /* Set nominal per second bandwidth for this frame */
    2363           0 :   cpi->target_bandwidth =
    2364           0 :       (int)(cpi->per_frame_bandwidth * cpi->output_framerate);
    2365           0 :   if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0;
    2366             : 
    2367             :   /* Account for mv, mode and other overheads. */
    2368           0 :   overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats);
    2369             : 
    2370             :   /* Special case code for first frame. */
    2371           0 :   if (cpi->common.current_video_frame == 0) {
    2372           0 :     cpi->twopass.est_max_qcorrection_factor = 1.0;
    2373             : 
    2374             :     /* Set a cq_level in constrained quality mode. */
    2375           0 :     if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
    2376             :       int est_cq;
    2377             : 
    2378           0 :       est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats,
    2379           0 :                            (int)(cpi->twopass.bits_left / frames_left),
    2380             :                            overhead_bits);
    2381             : 
    2382           0 :       cpi->cq_target_quality = cpi->oxcf.cq_level;
    2383           0 :       if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq;
    2384             :     }
    2385             : 
    2386             :     /* guess at maxq needed in 2nd pass */
    2387           0 :     cpi->twopass.maxq_max_limit = cpi->worst_quality;
    2388           0 :     cpi->twopass.maxq_min_limit = cpi->best_quality;
    2389             : 
    2390           0 :     tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
    2391           0 :                            (int)(cpi->twopass.bits_left / frames_left),
    2392             :                            overhead_bits);
    2393             : 
    2394             :     /* Limit the maxq value returned subsequently.
    2395             :      * This increases the risk of overspend or underspend if the initial
    2396             :      * estimate for the clip is bad, but helps prevent excessive
    2397             :      * variation in Q, especially near the end of a clip
    2398             :      * where for example a small overspend may cause Q to crash
    2399             :      */
    2400           0 :     cpi->twopass.maxq_max_limit =
    2401           0 :         ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality;
    2402           0 :     cpi->twopass.maxq_min_limit =
    2403           0 :         ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality;
    2404             : 
    2405           0 :     cpi->active_worst_quality = tmp_q;
    2406           0 :     cpi->ni_av_qi = tmp_q;
    2407             :   }
    2408             : 
    2409             :   /* The last few frames of a clip almost always have to few or too many
    2410             :    * bits and for the sake of over exact rate control we dont want to make
    2411             :    * radical adjustments to the allowed quantizer range just to use up a
    2412             :    * few surplus bits or get beneath the target rate.
    2413             :    */
    2414           0 :   else if ((cpi->common.current_video_frame <
    2415           0 :             (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) &&
    2416           0 :            ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
    2417           0 :             (unsigned int)cpi->twopass.total_stats.count)) {
    2418           0 :     if (frames_left < 1) frames_left = 1;
    2419             : 
    2420           0 :     tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
    2421           0 :                            (int)(cpi->twopass.bits_left / frames_left),
    2422             :                            overhead_bits);
    2423             : 
    2424             :     /* Move active_worst_quality but in a damped way */
    2425           0 :     if (tmp_q > cpi->active_worst_quality) {
    2426           0 :       cpi->active_worst_quality++;
    2427           0 :     } else if (tmp_q < cpi->active_worst_quality) {
    2428           0 :       cpi->active_worst_quality--;
    2429             :     }
    2430             : 
    2431           0 :     cpi->active_worst_quality =
    2432           0 :         ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
    2433             :   }
    2434             : 
    2435           0 :   cpi->twopass.frames_to_key--;
    2436             : 
    2437             :   /* Update the total stats remaining sturcture */
    2438           0 :   subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
    2439             : }
    2440             : 
    2441           0 : static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame,
    2442             :                              FIRSTPASS_STATS *this_frame,
    2443             :                              FIRSTPASS_STATS *next_frame) {
    2444           0 :   int is_viable_kf = 0;
    2445             : 
    2446             :   /* Does the frame satisfy the primary criteria of a key frame
    2447             :    *      If so, then examine how well it predicts subsequent frames
    2448             :    */
    2449           0 :   if ((this_frame->pcnt_second_ref < 0.10) &&
    2450           0 :       (next_frame->pcnt_second_ref < 0.10) &&
    2451           0 :       ((this_frame->pcnt_inter < 0.05) ||
    2452           0 :        (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) &&
    2453           0 :         ((this_frame->intra_error /
    2454           0 :           DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
    2455           0 :         ((fabs(last_frame->coded_error - this_frame->coded_error) /
    2456           0 :               DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
    2457           0 :           .40) ||
    2458           0 :          (fabs(last_frame->intra_error - this_frame->intra_error) /
    2459           0 :               DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
    2460           0 :           .40) ||
    2461           0 :          ((next_frame->intra_error /
    2462           0 :            DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
    2463             :     int i;
    2464             :     FIRSTPASS_STATS *start_pos;
    2465             : 
    2466             :     FIRSTPASS_STATS local_next_frame;
    2467             : 
    2468           0 :     double boost_score = 0.0;
    2469           0 :     double old_boost_score = 0.0;
    2470           0 :     double decay_accumulator = 1.0;
    2471             :     double next_iiratio;
    2472             : 
    2473           0 :     memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
    2474             : 
    2475             :     /* Note the starting file position so we can reset to it */
    2476           0 :     start_pos = cpi->twopass.stats_in;
    2477             : 
    2478             :     /* Examine how well the key frame predicts subsequent frames */
    2479           0 :     for (i = 0; i < 16; ++i) {
    2480           0 :       next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
    2481           0 :                       DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
    2482             : 
    2483           0 :       if (next_iiratio > RMAX) next_iiratio = RMAX;
    2484             : 
    2485             :       /* Cumulative effect of decay in prediction quality */
    2486           0 :       if (local_next_frame.pcnt_inter > 0.85) {
    2487           0 :         decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
    2488             :       } else {
    2489           0 :         decay_accumulator =
    2490           0 :             decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
    2491             :       }
    2492             : 
    2493             :       /* Keep a running total */
    2494           0 :       boost_score += (decay_accumulator * next_iiratio);
    2495             : 
    2496             :       /* Test various breakout clauses */
    2497           0 :       if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
    2498           0 :           (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
    2499           0 :             0.20) &&
    2500           0 :            (next_iiratio < 3.0)) ||
    2501           0 :           ((boost_score - old_boost_score) < 0.5) ||
    2502           0 :           (local_next_frame.intra_error < 200)) {
    2503             :         break;
    2504             :       }
    2505             : 
    2506           0 :       old_boost_score = boost_score;
    2507             : 
    2508             :       /* Get the next frame details */
    2509           0 :       if (EOF == input_stats(cpi, &local_next_frame)) break;
    2510             :     }
    2511             : 
    2512             :     /* If there is tolerable prediction for at least the next 3 frames
    2513             :      * then break out else discard this pottential key frame and move on
    2514             :      */
    2515           0 :     if (boost_score > 5.0 && (i > 3)) {
    2516           0 :       is_viable_kf = 1;
    2517             :     } else {
    2518             :       /* Reset the file position */
    2519           0 :       reset_fpf_position(cpi, start_pos);
    2520             : 
    2521           0 :       is_viable_kf = 0;
    2522             :     }
    2523             :   }
    2524             : 
    2525           0 :   return is_viable_kf;
    2526             : }
    2527           0 : static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
    2528             :   int i, j;
    2529             :   FIRSTPASS_STATS last_frame;
    2530             :   FIRSTPASS_STATS first_frame;
    2531             :   FIRSTPASS_STATS next_frame;
    2532             :   FIRSTPASS_STATS *start_position;
    2533             : 
    2534           0 :   double decay_accumulator = 1.0;
    2535           0 :   double boost_score = 0;
    2536           0 :   double old_boost_score = 0.0;
    2537             :   double loop_decay_rate;
    2538             : 
    2539           0 :   double kf_mod_err = 0.0;
    2540           0 :   double kf_group_err = 0.0;
    2541           0 :   double kf_group_intra_err = 0.0;
    2542           0 :   double kf_group_coded_err = 0.0;
    2543           0 :   double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
    2544             : 
    2545           0 :   memset(&next_frame, 0, sizeof(next_frame));
    2546             : 
    2547           0 :   vpx_clear_system_state();
    2548           0 :   start_position = cpi->twopass.stats_in;
    2549             : 
    2550           0 :   cpi->common.frame_type = KEY_FRAME;
    2551             : 
    2552             :   /* is this a forced key frame by interval */
    2553           0 :   cpi->this_key_frame_forced = cpi->next_key_frame_forced;
    2554             : 
    2555             :   /* Clear the alt ref active flag as this can never be active on a key
    2556             :    * frame
    2557             :    */
    2558           0 :   cpi->source_alt_ref_active = 0;
    2559             : 
    2560             :   /* Kf is always a gf so clear frames till next gf counter */
    2561           0 :   cpi->frames_till_gf_update_due = 0;
    2562             : 
    2563           0 :   cpi->twopass.frames_to_key = 1;
    2564             : 
    2565             :   /* Take a copy of the initial frame details */
    2566           0 :   memcpy(&first_frame, this_frame, sizeof(*this_frame));
    2567             : 
    2568           0 :   cpi->twopass.kf_group_bits = 0;
    2569           0 :   cpi->twopass.kf_group_error_left = 0;
    2570             : 
    2571           0 :   kf_mod_err = calculate_modified_err(cpi, this_frame);
    2572             : 
    2573             :   /* find the next keyframe */
    2574           0 :   i = 0;
    2575           0 :   while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
    2576             :     /* Accumulate kf group error */
    2577           0 :     kf_group_err += calculate_modified_err(cpi, this_frame);
    2578             : 
    2579             :     /* These figures keep intra and coded error counts for all frames
    2580             :      * including key frames in the group. The effect of the key frame
    2581             :      * itself can be subtracted out using the first_frame data
    2582             :      * collected above
    2583             :      */
    2584           0 :     kf_group_intra_err += this_frame->intra_error;
    2585           0 :     kf_group_coded_err += this_frame->coded_error;
    2586             : 
    2587             :     /* Load the next frame's stats. */
    2588           0 :     memcpy(&last_frame, this_frame, sizeof(*this_frame));
    2589           0 :     input_stats(cpi, this_frame);
    2590             : 
    2591             :     /* Provided that we are not at the end of the file... */
    2592           0 :     if (cpi->oxcf.auto_key &&
    2593           0 :         lookup_next_frame_stats(cpi, &next_frame) != EOF) {
    2594             :       /* Normal scene cut check */
    2595           0 :       if ((i >= MIN_GF_INTERVAL) &&
    2596           0 :           test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) {
    2597           0 :         break;
    2598             :       }
    2599             : 
    2600             :       /* How fast is prediction quality decaying */
    2601           0 :       loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
    2602             : 
    2603             :       /* We want to know something about the recent past... rather than
    2604             :        * as used elsewhere where we are concened with decay in prediction
    2605             :        * quality since the last GF or KF.
    2606             :        */
    2607           0 :       recent_loop_decay[i % 8] = loop_decay_rate;
    2608           0 :       decay_accumulator = 1.0;
    2609           0 :       for (j = 0; j < 8; ++j) {
    2610           0 :         decay_accumulator = decay_accumulator * recent_loop_decay[j];
    2611             :       }
    2612             : 
    2613             :       /* Special check for transition or high motion followed by a
    2614             :        * static scene.
    2615             :        */
    2616           0 :       if (detect_transition_to_still(cpi, i,
    2617           0 :                                      ((int)(cpi->key_frame_frequency) - (int)i),
    2618             :                                      loop_decay_rate, decay_accumulator)) {
    2619           0 :         break;
    2620             :       }
    2621             : 
    2622             :       /* Step on to the next frame */
    2623           0 :       cpi->twopass.frames_to_key++;
    2624             : 
    2625             :       /* If we don't have a real key frame within the next two
    2626             :        * forcekeyframeevery intervals then break out of the loop.
    2627             :        */
    2628           0 :       if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) {
    2629           0 :         break;
    2630             :       }
    2631             :     } else {
    2632           0 :       cpi->twopass.frames_to_key++;
    2633             :     }
    2634             : 
    2635           0 :     i++;
    2636             :   }
    2637             : 
    2638             :   /* If there is a max kf interval set by the user we must obey it.
    2639             :    * We already breakout of the loop above at 2x max.
    2640             :    * This code centers the extra kf if the actual natural
    2641             :    * interval is between 1x and 2x
    2642             :    */
    2643           0 :   if (cpi->oxcf.auto_key &&
    2644           0 :       cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
    2645           0 :     FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
    2646             :     FIRSTPASS_STATS tmp_frame;
    2647             : 
    2648           0 :     cpi->twopass.frames_to_key /= 2;
    2649             : 
    2650             :     /* Copy first frame details */
    2651           0 :     memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
    2652             : 
    2653             :     /* Reset to the start of the group */
    2654           0 :     reset_fpf_position(cpi, start_position);
    2655             : 
    2656           0 :     kf_group_err = 0;
    2657           0 :     kf_group_intra_err = 0;
    2658           0 :     kf_group_coded_err = 0;
    2659             : 
    2660             :     /* Rescan to get the correct error data for the forced kf group */
    2661           0 :     for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
    2662             :       /* Accumulate kf group errors */
    2663           0 :       kf_group_err += calculate_modified_err(cpi, &tmp_frame);
    2664           0 :       kf_group_intra_err += tmp_frame.intra_error;
    2665           0 :       kf_group_coded_err += tmp_frame.coded_error;
    2666             : 
    2667             :       /* Load a the next frame's stats */
    2668           0 :       input_stats(cpi, &tmp_frame);
    2669             :     }
    2670             : 
    2671             :     /* Reset to the start of the group */
    2672           0 :     reset_fpf_position(cpi, current_pos);
    2673             : 
    2674           0 :     cpi->next_key_frame_forced = 1;
    2675             :   } else {
    2676           0 :     cpi->next_key_frame_forced = 0;
    2677             :   }
    2678             : 
    2679             :   /* Special case for the last frame of the file */
    2680           0 :   if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
    2681             :     /* Accumulate kf group error */
    2682           0 :     kf_group_err += calculate_modified_err(cpi, this_frame);
    2683             : 
    2684             :     /* These figures keep intra and coded error counts for all frames
    2685             :      * including key frames in the group. The effect of the key frame
    2686             :      * itself can be subtracted out using the first_frame data
    2687             :      * collected above
    2688             :      */
    2689           0 :     kf_group_intra_err += this_frame->intra_error;
    2690           0 :     kf_group_coded_err += this_frame->coded_error;
    2691             :   }
    2692             : 
    2693             :   /* Calculate the number of bits that should be assigned to the kf group. */
    2694           0 :   if ((cpi->twopass.bits_left > 0) &&
    2695           0 :       (cpi->twopass.modified_error_left > 0.0)) {
    2696             :     /* Max for a single normal frame (not key frame) */
    2697           0 :     int max_bits = frame_max_bits(cpi);
    2698             : 
    2699             :     /* Maximum bits for the kf group */
    2700             :     int64_t max_grp_bits;
    2701             : 
    2702             :     /* Default allocation based on bits left and relative
    2703             :      * complexity of the section
    2704             :      */
    2705           0 :     cpi->twopass.kf_group_bits =
    2706           0 :         (int64_t)(cpi->twopass.bits_left *
    2707           0 :                   (kf_group_err / cpi->twopass.modified_error_left));
    2708             : 
    2709             :     /* Clip based on maximum per frame rate defined by the user. */
    2710           0 :     max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
    2711           0 :     if (cpi->twopass.kf_group_bits > max_grp_bits) {
    2712           0 :       cpi->twopass.kf_group_bits = max_grp_bits;
    2713             :     }
    2714             : 
    2715             :     /* Additional special case for CBR if buffer is getting full. */
    2716           0 :     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    2717           0 :       int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
    2718           0 :       int64_t buffer_lvl = cpi->buffer_level;
    2719             : 
    2720             :       /* If the buffer is near or above the optimal and this kf group is
    2721             :        * not being allocated much then increase the allocation a bit.
    2722             :        */
    2723           0 :       if (buffer_lvl >= opt_buffer_lvl) {
    2724           0 :         int64_t high_water_mark =
    2725           0 :             (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1;
    2726             : 
    2727             :         int64_t av_group_bits;
    2728             : 
    2729             :         /* Av bits per frame * number of frames */
    2730           0 :         av_group_bits = (int64_t)cpi->av_per_frame_bandwidth *
    2731           0 :                         (int64_t)cpi->twopass.frames_to_key;
    2732             : 
    2733             :         /* We are at or above the maximum. */
    2734           0 :         if (cpi->buffer_level >= high_water_mark) {
    2735             :           int64_t min_group_bits;
    2736             : 
    2737           0 :           min_group_bits =
    2738           0 :               av_group_bits + (int64_t)(buffer_lvl - high_water_mark);
    2739             : 
    2740           0 :           if (cpi->twopass.kf_group_bits < min_group_bits) {
    2741           0 :             cpi->twopass.kf_group_bits = min_group_bits;
    2742             :           }
    2743             :         }
    2744             :         /* We are above optimal but below the maximum */
    2745           0 :         else if (cpi->twopass.kf_group_bits < av_group_bits) {
    2746           0 :           int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits;
    2747             : 
    2748           0 :           cpi->twopass.kf_group_bits += (int64_t)(
    2749           0 :               (double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) /
    2750           0 :               (double)(high_water_mark - opt_buffer_lvl));
    2751             :         }
    2752             :       }
    2753             :     }
    2754             :   } else {
    2755           0 :     cpi->twopass.kf_group_bits = 0;
    2756             :   }
    2757             : 
    2758             :   /* Reset the first pass file position */
    2759           0 :   reset_fpf_position(cpi, start_position);
    2760             : 
    2761             :   /* determine how big to make this keyframe based on how well the
    2762             :    * subsequent frames use inter blocks
    2763             :    */
    2764           0 :   decay_accumulator = 1.0;
    2765           0 :   boost_score = 0.0;
    2766             : 
    2767           0 :   for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
    2768             :     double r;
    2769             : 
    2770           0 :     if (EOF == input_stats(cpi, &next_frame)) break;
    2771             : 
    2772           0 :     if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) {
    2773           0 :       r = (IIKFACTOR2 * next_frame.intra_error /
    2774           0 :            DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
    2775             :     } else {
    2776           0 :       r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
    2777           0 :            DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
    2778             :     }
    2779             : 
    2780           0 :     if (r > RMAX) r = RMAX;
    2781             : 
    2782             :     /* How fast is prediction quality decaying */
    2783           0 :     loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
    2784             : 
    2785           0 :     decay_accumulator = decay_accumulator * loop_decay_rate;
    2786           0 :     decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
    2787             : 
    2788           0 :     boost_score += (decay_accumulator * r);
    2789             : 
    2790           0 :     if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) {
    2791           0 :       break;
    2792             :     }
    2793             : 
    2794           0 :     old_boost_score = boost_score;
    2795             :   }
    2796             : 
    2797             :   if (1) {
    2798             :     FIRSTPASS_STATS sectionstats;
    2799             :     double Ratio;
    2800             : 
    2801           0 :     zero_stats(&sectionstats);
    2802           0 :     reset_fpf_position(cpi, start_position);
    2803             : 
    2804           0 :     for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
    2805           0 :       input_stats(cpi, &next_frame);
    2806           0 :       accumulate_stats(&sectionstats, &next_frame);
    2807             :     }
    2808             : 
    2809           0 :     avg_stats(&sectionstats);
    2810             : 
    2811           0 :     cpi->twopass.section_intra_rating =
    2812           0 :         (unsigned int)(sectionstats.intra_error /
    2813           0 :                        DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
    2814             : 
    2815           0 :     Ratio = sectionstats.intra_error /
    2816           0 :             DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
    2817           0 :     cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
    2818             : 
    2819           0 :     if (cpi->twopass.section_max_qfactor < 0.80) {
    2820           0 :       cpi->twopass.section_max_qfactor = 0.80;
    2821             :     }
    2822             :   }
    2823             : 
    2824             :   /* When using CBR apply additional buffer fullness related upper limits */
    2825           0 :   if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    2826             :     double max_boost;
    2827             : 
    2828           0 :     if (cpi->drop_frames_allowed) {
    2829           0 :       int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark *
    2830           0 :                                   (cpi->oxcf.optimal_buffer_level / 100));
    2831             : 
    2832           0 :       if (cpi->buffer_level > df_buffer_level) {
    2833           0 :         max_boost =
    2834           0 :             ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
    2835           0 :             DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
    2836             :       } else {
    2837           0 :         max_boost = 0.0;
    2838             :       }
    2839           0 :     } else if (cpi->buffer_level > 0) {
    2840           0 :       max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
    2841           0 :                   DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
    2842             :     } else {
    2843           0 :       max_boost = 0.0;
    2844             :     }
    2845             : 
    2846           0 :     if (boost_score > max_boost) boost_score = max_boost;
    2847             :   }
    2848             : 
    2849             :   /* Reset the first pass file position */
    2850           0 :   reset_fpf_position(cpi, start_position);
    2851             : 
    2852             :   /* Work out how many bits to allocate for the key frame itself */
    2853             :   if (1) {
    2854           0 :     int kf_boost = (int)boost_score;
    2855             :     int allocation_chunks;
    2856           0 :     int Counter = cpi->twopass.frames_to_key;
    2857             :     int alt_kf_bits;
    2858           0 :     YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
    2859             : /* Min boost based on kf interval */
    2860             : #if 0
    2861             : 
    2862             :         while ((kf_boost < 48) && (Counter > 0))
    2863             :         {
    2864             :             Counter -= 2;
    2865             :             kf_boost ++;
    2866             :         }
    2867             : 
    2868             : #endif
    2869             : 
    2870           0 :     if (kf_boost < 48) {
    2871           0 :       kf_boost += ((Counter + 1) >> 1);
    2872             : 
    2873           0 :       if (kf_boost > 48) kf_boost = 48;
    2874             :     }
    2875             : 
    2876             :     /* bigger frame sizes need larger kf boosts, smaller frames smaller
    2877             :      * boosts...
    2878             :      */
    2879           0 :     if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) {
    2880           0 :       kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
    2881           0 :     } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) {
    2882           0 :       kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
    2883             :     }
    2884             : 
    2885             :     /* Min KF boost */
    2886           0 :     kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */
    2887           0 :     if (kf_boost < 250) kf_boost = 250;
    2888             : 
    2889             :     /*
    2890             :      * We do three calculations for kf size.
    2891             :      * The first is based on the error score for the whole kf group.
    2892             :      * The second (optionaly) on the key frames own error if this is
    2893             :      * smaller than the average for the group.
    2894             :      * The final one insures that the frame receives at least the
    2895             :      * allocation it would have received based on its own error score vs
    2896             :      * the error score remaining
    2897             :      * Special case if the sequence appears almost totaly static
    2898             :      * as measured by the decay accumulator. In this case we want to
    2899             :      * spend almost all of the bits on the key frame.
    2900             :      * cpi->twopass.frames_to_key-1 because key frame itself is taken
    2901             :      * care of by kf_boost.
    2902             :      */
    2903           0 :     if (decay_accumulator >= 0.99) {
    2904           0 :       allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
    2905             :     } else {
    2906           0 :       allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
    2907             :     }
    2908             : 
    2909             :     /* Normalize Altboost and allocations chunck down to prevent overflow */
    2910           0 :     while (kf_boost > 1000) {
    2911           0 :       kf_boost /= 2;
    2912           0 :       allocation_chunks /= 2;
    2913             :     }
    2914             : 
    2915           0 :     cpi->twopass.kf_group_bits =
    2916           0 :         (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
    2917             : 
    2918             :     /* Calculate the number of bits to be spent on the key frame */
    2919           0 :     cpi->twopass.kf_bits =
    2920           0 :         (int)((double)kf_boost *
    2921           0 :               ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
    2922             : 
    2923             :     /* Apply an additional limit for CBR */
    2924           0 :     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    2925           0 :       if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) {
    2926           0 :         cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2);
    2927             :       }
    2928             :     }
    2929             : 
    2930             :     /* If the key frame is actually easier than the average for the
    2931             :      * kf group (which does sometimes happen... eg a blank intro frame)
    2932             :      * Then use an alternate calculation based on the kf error score
    2933             :      * which should give a smaller key frame.
    2934             :      */
    2935           0 :     if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
    2936           0 :       double alt_kf_grp_bits =
    2937           0 :           ((double)cpi->twopass.bits_left *
    2938           0 :            (kf_mod_err * (double)cpi->twopass.frames_to_key) /
    2939           0 :            DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
    2940             : 
    2941           0 :       alt_kf_bits = (int)((double)kf_boost *
    2942           0 :                           (alt_kf_grp_bits / (double)allocation_chunks));
    2943             : 
    2944           0 :       if (cpi->twopass.kf_bits > alt_kf_bits) {
    2945           0 :         cpi->twopass.kf_bits = alt_kf_bits;
    2946             :       }
    2947             :     }
    2948             :     /* Else if it is much harder than other frames in the group make sure
    2949             :      * it at least receives an allocation in keeping with its relative
    2950             :      * error score
    2951             :      */
    2952             :     else {
    2953           0 :       alt_kf_bits = (int)((double)cpi->twopass.bits_left *
    2954           0 :                           (kf_mod_err / DOUBLE_DIVIDE_CHECK(
    2955             :                                             cpi->twopass.modified_error_left)));
    2956             : 
    2957           0 :       if (alt_kf_bits > cpi->twopass.kf_bits) {
    2958           0 :         cpi->twopass.kf_bits = alt_kf_bits;
    2959             :       }
    2960             :     }
    2961             : 
    2962           0 :     cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
    2963             :     /* Add in the minimum frame allowance */
    2964           0 :     cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
    2965             : 
    2966             :     /* Peer frame bit target for this frame */
    2967           0 :     cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
    2968             : 
    2969             :     /* Convert to a per second bitrate */
    2970           0 :     cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate);
    2971             :   }
    2972             : 
    2973             :   /* Note the total error score of the kf group minus the key frame itself */
    2974           0 :   cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
    2975             : 
    2976             :   /* Adjust the count of total modified error left. The count of bits left
    2977             :    * is adjusted elsewhere based on real coded frame sizes
    2978             :    */
    2979           0 :   cpi->twopass.modified_error_left -= kf_group_err;
    2980             : 
    2981           0 :   if (cpi->oxcf.allow_spatial_resampling) {
    2982           0 :     int resample_trigger = 0;
    2983           0 :     int last_kf_resampled = 0;
    2984             :     int kf_q;
    2985           0 :     int scale_val = 0;
    2986             :     int hr, hs, vr, vs;
    2987           0 :     int new_width = cpi->oxcf.Width;
    2988           0 :     int new_height = cpi->oxcf.Height;
    2989             : 
    2990             :     int projected_buffer_level;
    2991             :     int tmp_q;
    2992             : 
    2993             :     double projected_bits_perframe;
    2994           0 :     double group_iiratio = (kf_group_intra_err - first_frame.intra_error) /
    2995           0 :                            (kf_group_coded_err - first_frame.coded_error);
    2996           0 :     double err_per_frame = kf_group_err / cpi->twopass.frames_to_key;
    2997             :     double bits_per_frame;
    2998             :     double av_bits_per_frame;
    2999             :     double effective_size_ratio;
    3000             : 
    3001           0 :     if ((cpi->common.Width != cpi->oxcf.Width) ||
    3002           0 :         (cpi->common.Height != cpi->oxcf.Height)) {
    3003           0 :       last_kf_resampled = 1;
    3004             :     }
    3005             : 
    3006             :     /* Set back to unscaled by defaults */
    3007           0 :     cpi->common.horiz_scale = NORMAL;
    3008           0 :     cpi->common.vert_scale = NORMAL;
    3009             : 
    3010             :     /* Calculate Average bits per frame. */
    3011           0 :     av_bits_per_frame = cpi->oxcf.target_bandwidth /
    3012           0 :                         DOUBLE_DIVIDE_CHECK((double)cpi->framerate);
    3013             : 
    3014             :     /* CBR... Use the clip average as the target for deciding resample */
    3015           0 :     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    3016           0 :       bits_per_frame = av_bits_per_frame;
    3017             :     }
    3018             : 
    3019             :     /* In VBR we want to avoid downsampling in easy section unless we
    3020             :      * are under extreme pressure So use the larger of target bitrate
    3021             :      * for this section or average bitrate for sequence
    3022             :      */
    3023             :     else {
    3024             :       /* This accounts for how hard the section is... */
    3025           0 :       bits_per_frame =
    3026           0 :           (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key);
    3027             : 
    3028             :       /* Dont turn to resampling in easy sections just because they
    3029             :        * have been assigned a small number of bits
    3030             :        */
    3031           0 :       if (bits_per_frame < av_bits_per_frame) {
    3032           0 :         bits_per_frame = av_bits_per_frame;
    3033             :       }
    3034             :     }
    3035             : 
    3036             :     /* bits_per_frame should comply with our minimum */
    3037           0 :     if (bits_per_frame < (cpi->oxcf.target_bandwidth *
    3038           0 :                           cpi->oxcf.two_pass_vbrmin_section / 100)) {
    3039           0 :       bits_per_frame = (cpi->oxcf.target_bandwidth *
    3040           0 :                         cpi->oxcf.two_pass_vbrmin_section / 100);
    3041             :     }
    3042             : 
    3043             :     /* Work out if spatial resampling is necessary */
    3044           0 :     kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame,
    3045             :                                group_iiratio);
    3046             : 
    3047             :     /* If we project a required Q higher than the maximum allowed Q then
    3048             :      * make a guess at the actual size of frames in this section
    3049             :      */
    3050           0 :     projected_bits_perframe = bits_per_frame;
    3051           0 :     tmp_q = kf_q;
    3052             : 
    3053           0 :     while (tmp_q > cpi->worst_quality) {
    3054           0 :       projected_bits_perframe *= 1.04;
    3055           0 :       tmp_q--;
    3056             :     }
    3057             : 
    3058             :     /* Guess at buffer level at the end of the section */
    3059           0 :     projected_buffer_level =
    3060           0 :         (int)(cpi->buffer_level -
    3061           0 :               (int)((projected_bits_perframe - av_bits_per_frame) *
    3062           0 :                     cpi->twopass.frames_to_key));
    3063             : 
    3064             :     if (0) {
    3065             :       FILE *f = fopen("Subsamle.stt", "a");
    3066             :       fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n",
    3067             :               cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale,
    3068             :               cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key,
    3069             :               (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key),
    3070             :               new_height, new_width);
    3071             :       fclose(f);
    3072             :     }
    3073             : 
    3074             :     /* The trigger for spatial resampling depends on the various
    3075             :      * parameters such as whether we are streaming (CBR) or VBR.
    3076             :      */
    3077           0 :     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
    3078             :       /* Trigger resample if we are projected to fall below down
    3079             :        * sample level or resampled last time and are projected to
    3080             :        * remain below the up sample level
    3081             :        */
    3082           0 :       if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark *
    3083           0 :                                      cpi->oxcf.optimal_buffer_level / 100)) ||
    3084           0 :           (last_kf_resampled &&
    3085           0 :            (projected_buffer_level < (cpi->oxcf.resample_up_water_mark *
    3086           0 :                                       cpi->oxcf.optimal_buffer_level / 100)))) {
    3087           0 :         resample_trigger = 1;
    3088             :       } else {
    3089           0 :         resample_trigger = 0;
    3090             :       }
    3091             :     } else {
    3092           0 :       int64_t clip_bits = (int64_t)(
    3093           0 :           cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth /
    3094           0 :           DOUBLE_DIVIDE_CHECK((double)cpi->framerate));
    3095           0 :       int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
    3096             : 
    3097             :       /* If triggered last time the threshold for triggering again is
    3098             :        * reduced:
    3099             :        *
    3100             :        * Projected Q higher than allowed and Overspend > 5% of total
    3101             :        * bits
    3102             :        */
    3103           0 :       if ((last_kf_resampled && (kf_q > cpi->worst_quality)) ||
    3104           0 :           ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) {
    3105           0 :         resample_trigger = 1;
    3106             :       } else {
    3107           0 :         resample_trigger = 0;
    3108             :       }
    3109             :     }
    3110             : 
    3111           0 :     if (resample_trigger) {
    3112           0 :       while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) {
    3113           0 :         scale_val++;
    3114             : 
    3115           0 :         cpi->common.vert_scale = vscale_lookup[scale_val];
    3116           0 :         cpi->common.horiz_scale = hscale_lookup[scale_val];
    3117             : 
    3118           0 :         Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
    3119           0 :         Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
    3120             : 
    3121           0 :         new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
    3122           0 :         new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
    3123             : 
    3124             :         /* Reducing the area to 1/4 does not reduce the complexity
    3125             :          * (err_per_frame) to 1/4... effective_sizeratio attempts
    3126             :          * to provide a crude correction for this
    3127             :          */
    3128           0 :         effective_size_ratio = (double)(new_width * new_height) /
    3129           0 :                                (double)(cpi->oxcf.Width * cpi->oxcf.Height);
    3130           0 :         effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
    3131             : 
    3132             :         /* Now try again and see what Q we get with the smaller
    3133             :          * image size
    3134             :          */
    3135           0 :         kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio,
    3136             :                                    (int)bits_per_frame, group_iiratio);
    3137             : 
    3138             :         if (0) {
    3139             :           FILE *f = fopen("Subsamle.stt", "a");
    3140             :           fprintf(
    3141             :               f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q,
    3142             :               cpi->common.horiz_scale, cpi->common.vert_scale,
    3143             :               kf_group_err / cpi->twopass.frames_to_key,
    3144             :               (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key),
    3145             :               new_height, new_width);
    3146             :           fclose(f);
    3147             :         }
    3148             :       }
    3149             :     }
    3150             : 
    3151           0 :     if ((cpi->common.Width != new_width) ||
    3152           0 :         (cpi->common.Height != new_height)) {
    3153           0 :       cpi->common.Width = new_width;
    3154           0 :       cpi->common.Height = new_height;
    3155           0 :       vp8_alloc_compressor_data(cpi);
    3156             :     }
    3157             :   }
    3158           0 : }

Generated by: LCOV version 1.13