LCOV - code coverage report
Current view: top level - media/libvpx/libvpx/vp9/decoder - vp9_decodeframe.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 1134 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 59 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include <assert.h>
      12             : #include <stdlib.h>  // qsort()
      13             : 
      14             : #include "./vp9_rtcd.h"
      15             : #include "./vpx_dsp_rtcd.h"
      16             : #include "./vpx_scale_rtcd.h"
      17             : 
      18             : #include "vpx_dsp/bitreader_buffer.h"
      19             : #include "vpx_dsp/bitreader.h"
      20             : #include "vpx_dsp/vpx_dsp_common.h"
      21             : #include "vpx_mem/vpx_mem.h"
      22             : #include "vpx_ports/mem.h"
      23             : #include "vpx_ports/mem_ops.h"
      24             : #include "vpx_scale/vpx_scale.h"
      25             : #include "vpx_util/vpx_thread.h"
      26             : 
      27             : #include "vp9/common/vp9_alloccommon.h"
      28             : #include "vp9/common/vp9_common.h"
      29             : #include "vp9/common/vp9_entropy.h"
      30             : #include "vp9/common/vp9_entropymode.h"
      31             : #include "vp9/common/vp9_idct.h"
      32             : #include "vp9/common/vp9_thread_common.h"
      33             : #include "vp9/common/vp9_pred_common.h"
      34             : #include "vp9/common/vp9_quant_common.h"
      35             : #include "vp9/common/vp9_reconintra.h"
      36             : #include "vp9/common/vp9_reconinter.h"
      37             : #include "vp9/common/vp9_seg_common.h"
      38             : #include "vp9/common/vp9_tile_common.h"
      39             : 
      40             : #include "vp9/decoder/vp9_decodeframe.h"
      41             : #include "vp9/decoder/vp9_detokenize.h"
      42             : #include "vp9/decoder/vp9_decodemv.h"
      43             : #include "vp9/decoder/vp9_decoder.h"
      44             : #include "vp9/decoder/vp9_dsubexp.h"
      45             : 
      46             : #define MAX_VP9_HEADER_SIZE 80
      47             : 
      48           0 : static int is_compound_reference_allowed(const VP9_COMMON *cm) {
      49             :   int i;
      50           0 :   for (i = 1; i < REFS_PER_FRAME; ++i)
      51           0 :     if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
      52             : 
      53           0 :   return 0;
      54             : }
      55             : 
      56           0 : static void setup_compound_reference_mode(VP9_COMMON *cm) {
      57           0 :   if (cm->ref_frame_sign_bias[LAST_FRAME] ==
      58           0 :       cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
      59           0 :     cm->comp_fixed_ref = ALTREF_FRAME;
      60           0 :     cm->comp_var_ref[0] = LAST_FRAME;
      61           0 :     cm->comp_var_ref[1] = GOLDEN_FRAME;
      62           0 :   } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
      63           0 :              cm->ref_frame_sign_bias[ALTREF_FRAME]) {
      64           0 :     cm->comp_fixed_ref = GOLDEN_FRAME;
      65           0 :     cm->comp_var_ref[0] = LAST_FRAME;
      66           0 :     cm->comp_var_ref[1] = ALTREF_FRAME;
      67             :   } else {
      68           0 :     cm->comp_fixed_ref = LAST_FRAME;
      69           0 :     cm->comp_var_ref[0] = GOLDEN_FRAME;
      70           0 :     cm->comp_var_ref[1] = ALTREF_FRAME;
      71             :   }
      72           0 : }
      73             : 
      74           0 : static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
      75           0 :   return len != 0 && len <= (size_t)(end - start);
      76             : }
      77             : 
      78           0 : static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
      79           0 :   const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
      80           0 :   return data > max ? max : data;
      81             : }
      82             : 
      83           0 : static TX_MODE read_tx_mode(vpx_reader *r) {
      84           0 :   TX_MODE tx_mode = vpx_read_literal(r, 2);
      85           0 :   if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
      86           0 :   return tx_mode;
      87             : }
      88             : 
      89           0 : static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
      90             :   int i, j;
      91             : 
      92           0 :   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
      93           0 :     for (j = 0; j < TX_SIZES - 3; ++j)
      94           0 :       vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
      95             : 
      96           0 :   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
      97           0 :     for (j = 0; j < TX_SIZES - 2; ++j)
      98           0 :       vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
      99             : 
     100           0 :   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
     101           0 :     for (j = 0; j < TX_SIZES - 1; ++j)
     102           0 :       vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
     103           0 : }
     104             : 
     105           0 : static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
     106             :   int i, j;
     107           0 :   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
     108           0 :     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
     109           0 :       vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
     110           0 : }
     111             : 
     112           0 : static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
     113             :   int i, j;
     114           0 :   for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
     115           0 :     for (j = 0; j < INTER_MODES - 1; ++j)
     116           0 :       vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
     117           0 : }
     118             : 
     119           0 : static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
     120             :                                                 vpx_reader *r) {
     121           0 :   if (is_compound_reference_allowed(cm)) {
     122           0 :     return vpx_read_bit(r)
     123           0 :                ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
     124           0 :                : SINGLE_REFERENCE;
     125             :   } else {
     126           0 :     return SINGLE_REFERENCE;
     127             :   }
     128             : }
     129             : 
     130           0 : static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
     131           0 :   FRAME_CONTEXT *const fc = cm->fc;
     132             :   int i;
     133             : 
     134           0 :   if (cm->reference_mode == REFERENCE_MODE_SELECT)
     135           0 :     for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
     136           0 :       vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
     137             : 
     138           0 :   if (cm->reference_mode != COMPOUND_REFERENCE)
     139           0 :     for (i = 0; i < REF_CONTEXTS; ++i) {
     140           0 :       vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
     141           0 :       vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
     142             :     }
     143             : 
     144           0 :   if (cm->reference_mode != SINGLE_REFERENCE)
     145           0 :     for (i = 0; i < REF_CONTEXTS; ++i)
     146           0 :       vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
     147           0 : }
     148             : 
     149           0 : static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
     150             :   int i;
     151           0 :   for (i = 0; i < n; ++i)
     152           0 :     if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
     153           0 : }
     154             : 
     155           0 : static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
     156             :   int i, j;
     157             : 
     158           0 :   update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
     159             : 
     160           0 :   for (i = 0; i < 2; ++i) {
     161           0 :     nmv_component *const comp_ctx = &ctx->comps[i];
     162           0 :     update_mv_probs(&comp_ctx->sign, 1, r);
     163           0 :     update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
     164           0 :     update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
     165           0 :     update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
     166             :   }
     167             : 
     168           0 :   for (i = 0; i < 2; ++i) {
     169           0 :     nmv_component *const comp_ctx = &ctx->comps[i];
     170           0 :     for (j = 0; j < CLASS0_SIZE; ++j)
     171           0 :       update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
     172           0 :     update_mv_probs(comp_ctx->fp, 3, r);
     173             :   }
     174             : 
     175           0 :   if (allow_hp) {
     176           0 :     for (i = 0; i < 2; ++i) {
     177           0 :       nmv_component *const comp_ctx = &ctx->comps[i];
     178           0 :       update_mv_probs(&comp_ctx->class0_hp, 1, r);
     179           0 :       update_mv_probs(&comp_ctx->hp, 1, r);
     180             :     }
     181             :   }
     182           0 : }
     183             : 
     184           0 : static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
     185             :                                           const TX_SIZE tx_size, uint8_t *dst,
     186             :                                           int stride, int eob) {
     187           0 :   struct macroblockd_plane *const pd = &xd->plane[plane];
     188           0 :   tran_low_t *const dqcoeff = pd->dqcoeff;
     189           0 :   assert(eob > 0);
     190             : #if CONFIG_VP9_HIGHBITDEPTH
     191             :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     192             :     if (xd->lossless) {
     193             :       vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd);
     194             :     } else {
     195             :       switch (tx_size) {
     196             :         case TX_4X4:
     197             :           vp9_highbd_idct4x4_add(dqcoeff, dst, stride, eob, xd->bd);
     198             :           break;
     199             :         case TX_8X8:
     200             :           vp9_highbd_idct8x8_add(dqcoeff, dst, stride, eob, xd->bd);
     201             :           break;
     202             :         case TX_16X16:
     203             :           vp9_highbd_idct16x16_add(dqcoeff, dst, stride, eob, xd->bd);
     204             :           break;
     205             :         case TX_32X32:
     206             :           vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd);
     207             :           break;
     208             :         default: assert(0 && "Invalid transform size");
     209             :       }
     210             :     }
     211             :   } else {
     212             :     if (xd->lossless) {
     213             :       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
     214             :     } else {
     215             :       switch (tx_size) {
     216             :         case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
     217             :         case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
     218             :         case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
     219             :         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
     220             :         default: assert(0 && "Invalid transform size"); return;
     221             :       }
     222             :     }
     223             :   }
     224             : #else
     225           0 :   if (xd->lossless) {
     226           0 :     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
     227             :   } else {
     228           0 :     switch (tx_size) {
     229           0 :       case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
     230           0 :       case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
     231           0 :       case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
     232           0 :       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
     233           0 :       default: assert(0 && "Invalid transform size"); return;
     234             :     }
     235             :   }
     236             : #endif  // CONFIG_VP9_HIGHBITDEPTH
     237             : 
     238           0 :   if (eob == 1) {
     239           0 :     dqcoeff[0] = 0;
     240             :   } else {
     241           0 :     if (tx_size <= TX_16X16 && eob <= 10)
     242           0 :       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
     243           0 :     else if (tx_size == TX_32X32 && eob <= 34)
     244           0 :       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
     245             :     else
     246           0 :       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
     247             :   }
     248           0 : }
     249             : 
     250           0 : static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
     251             :                                           const TX_TYPE tx_type,
     252             :                                           const TX_SIZE tx_size, uint8_t *dst,
     253             :                                           int stride, int eob) {
     254           0 :   struct macroblockd_plane *const pd = &xd->plane[plane];
     255           0 :   tran_low_t *const dqcoeff = pd->dqcoeff;
     256           0 :   assert(eob > 0);
     257             : #if CONFIG_VP9_HIGHBITDEPTH
     258             :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     259             :     if (xd->lossless) {
     260             :       vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd);
     261             :     } else {
     262             :       switch (tx_size) {
     263             :         case TX_4X4:
     264             :           vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
     265             :           break;
     266             :         case TX_8X8:
     267             :           vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
     268             :           break;
     269             :         case TX_16X16:
     270             :           vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob, xd->bd);
     271             :           break;
     272             :         case TX_32X32:
     273             :           vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd);
     274             :           break;
     275             :         default: assert(0 && "Invalid transform size");
     276             :       }
     277             :     }
     278             :   } else {
     279             :     if (xd->lossless) {
     280             :       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
     281             :     } else {
     282             :       switch (tx_size) {
     283             :         case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
     284             :         case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
     285             :         case TX_16X16:
     286             :           vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
     287             :           break;
     288             :         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
     289             :         default: assert(0 && "Invalid transform size"); return;
     290             :       }
     291             :     }
     292             :   }
     293             : #else
     294           0 :   if (xd->lossless) {
     295           0 :     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
     296             :   } else {
     297           0 :     switch (tx_size) {
     298           0 :       case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
     299           0 :       case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
     300             :       case TX_16X16:
     301           0 :         vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
     302           0 :         break;
     303           0 :       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
     304           0 :       default: assert(0 && "Invalid transform size"); return;
     305             :     }
     306             :   }
     307             : #endif  // CONFIG_VP9_HIGHBITDEPTH
     308             : 
     309           0 :   if (eob == 1) {
     310           0 :     dqcoeff[0] = 0;
     311             :   } else {
     312           0 :     if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
     313           0 :       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
     314           0 :     else if (tx_size == TX_32X32 && eob <= 34)
     315           0 :       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
     316             :     else
     317           0 :       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
     318             :   }
     319           0 : }
     320             : 
     321           0 : static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
     322             :                                                 MODE_INFO *const mi, int plane,
     323             :                                                 int row, int col,
     324             :                                                 TX_SIZE tx_size) {
     325           0 :   MACROBLOCKD *const xd = &twd->xd;
     326           0 :   struct macroblockd_plane *const pd = &xd->plane[plane];
     327           0 :   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
     328             :   uint8_t *dst;
     329           0 :   dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
     330             : 
     331           0 :   if (mi->sb_type < BLOCK_8X8)
     332           0 :     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
     333             : 
     334           0 :   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
     335             :                           dst, pd->dst.stride, col, row, plane);
     336             : 
     337           0 :   if (!mi->skip) {
     338           0 :     const TX_TYPE tx_type =
     339           0 :         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
     340           0 :     const scan_order *sc = (plane || xd->lossless)
     341           0 :                                ? &vp9_default_scan_orders[tx_size]
     342           0 :                                : &vp9_scan_orders[tx_size][tx_type];
     343           0 :     const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
     344           0 :                                             mi->segment_id);
     345           0 :     if (eob > 0) {
     346           0 :       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
     347             :                                     pd->dst.stride, eob);
     348             :     }
     349             :   }
     350           0 : }
     351             : 
     352           0 : static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
     353             :                                    int plane, int row, int col,
     354             :                                    TX_SIZE tx_size) {
     355           0 :   MACROBLOCKD *const xd = &twd->xd;
     356           0 :   struct macroblockd_plane *const pd = &xd->plane[plane];
     357           0 :   const scan_order *sc = &vp9_default_scan_orders[tx_size];
     358           0 :   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
     359           0 :                                           mi->segment_id);
     360             : 
     361           0 :   if (eob > 0) {
     362           0 :     inverse_transform_block_inter(
     363           0 :         xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
     364             :         pd->dst.stride, eob);
     365             :   }
     366           0 :   return eob;
     367             : }
     368             : 
     369           0 : static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
     370             :                             int dst_stride, int x, int y, int b_w, int b_h,
     371             :                             int w, int h) {
     372             :   // Get a pointer to the start of the real data for this row.
     373           0 :   const uint8_t *ref_row = src - x - y * src_stride;
     374             : 
     375           0 :   if (y >= h)
     376           0 :     ref_row += (h - 1) * src_stride;
     377           0 :   else if (y > 0)
     378           0 :     ref_row += y * src_stride;
     379             : 
     380             :   do {
     381           0 :     int right = 0, copy;
     382           0 :     int left = x < 0 ? -x : 0;
     383             : 
     384           0 :     if (left > b_w) left = b_w;
     385             : 
     386           0 :     if (x + b_w > w) right = x + b_w - w;
     387             : 
     388           0 :     if (right > b_w) right = b_w;
     389             : 
     390           0 :     copy = b_w - left - right;
     391             : 
     392           0 :     if (left) memset(dst, ref_row[0], left);
     393             : 
     394           0 :     if (copy) memcpy(dst + left, ref_row + x + left, copy);
     395             : 
     396           0 :     if (right) memset(dst + left + copy, ref_row[w - 1], right);
     397             : 
     398           0 :     dst += dst_stride;
     399           0 :     ++y;
     400             : 
     401           0 :     if (y > 0 && y < h) ref_row += src_stride;
     402           0 :   } while (--b_h);
     403           0 : }
     404             : 
     405             : #if CONFIG_VP9_HIGHBITDEPTH
     406             : static void high_build_mc_border(const uint8_t *src8, int src_stride,
     407             :                                  uint16_t *dst, int dst_stride, int x, int y,
     408             :                                  int b_w, int b_h, int w, int h) {
     409             :   // Get a pointer to the start of the real data for this row.
     410             :   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
     411             :   const uint16_t *ref_row = src - x - y * src_stride;
     412             : 
     413             :   if (y >= h)
     414             :     ref_row += (h - 1) * src_stride;
     415             :   else if (y > 0)
     416             :     ref_row += y * src_stride;
     417             : 
     418             :   do {
     419             :     int right = 0, copy;
     420             :     int left = x < 0 ? -x : 0;
     421             : 
     422             :     if (left > b_w) left = b_w;
     423             : 
     424             :     if (x + b_w > w) right = x + b_w - w;
     425             : 
     426             :     if (right > b_w) right = b_w;
     427             : 
     428             :     copy = b_w - left - right;
     429             : 
     430             :     if (left) vpx_memset16(dst, ref_row[0], left);
     431             : 
     432             :     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
     433             : 
     434             :     if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
     435             : 
     436             :     dst += dst_stride;
     437             :     ++y;
     438             : 
     439             :     if (y > 0 && y < h) ref_row += src_stride;
     440             :   } while (--b_h);
     441             : }
     442             : #endif  // CONFIG_VP9_HIGHBITDEPTH
     443             : 
     444             : #if CONFIG_VP9_HIGHBITDEPTH
     445             : static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
     446             :                                int x0, int y0, int b_w, int b_h,
     447             :                                int frame_width, int frame_height,
     448             :                                int border_offset, uint8_t *const dst,
     449             :                                int dst_buf_stride, int subpel_x, int subpel_y,
     450             :                                const InterpKernel *kernel,
     451             :                                const struct scale_factors *sf, MACROBLOCKD *xd,
     452             :                                int w, int h, int ref, int xs, int ys) {
     453             :   DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]);
     454             :   const uint8_t *buf_ptr;
     455             : 
     456             :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     457             :     high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
     458             :                          b_w, b_h, frame_width, frame_height);
     459             :     buf_ptr = CONVERT_TO_BYTEPTR(mc_buf_high) + border_offset;
     460             :   } else {
     461             :     build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
     462             :                     y0, b_w, b_h, frame_width, frame_height);
     463             :     buf_ptr = ((uint8_t *)mc_buf_high) + border_offset;
     464             :   }
     465             : 
     466             :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     467             :     highbd_inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x,
     468             :                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
     469             :   } else {
     470             :     inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf,
     471             :                     w, h, ref, kernel, xs, ys);
     472             :   }
     473             : }
     474             : #else
     475           0 : static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
     476             :                                int x0, int y0, int b_w, int b_h,
     477             :                                int frame_width, int frame_height,
     478             :                                int border_offset, uint8_t *const dst,
     479             :                                int dst_buf_stride, int subpel_x, int subpel_y,
     480             :                                const InterpKernel *kernel,
     481             :                                const struct scale_factors *sf, int w, int h,
     482             :                                int ref, int xs, int ys) {
     483             :   DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]);
     484             :   const uint8_t *buf_ptr;
     485             : 
     486           0 :   build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
     487             :                   frame_width, frame_height);
     488           0 :   buf_ptr = mc_buf + border_offset;
     489             : 
     490           0 :   inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
     491             :                   h, ref, kernel, xs, ys);
     492           0 : }
     493             : #endif  // CONFIG_VP9_HIGHBITDEPTH
     494             : 
     495           0 : static void dec_build_inter_predictors(
     496             :     VPxWorker *const worker, MACROBLOCKD *xd, int plane, int bw, int bh, int x,
     497             :     int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel,
     498             :     const struct scale_factors *sf, struct buf_2d *pre_buf,
     499             :     struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
     500             :     int is_scaled, int ref) {
     501           0 :   struct macroblockd_plane *const pd = &xd->plane[plane];
     502           0 :   uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
     503             :   MV32 scaled_mv;
     504             :   int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
     505             :       subpel_x, subpel_y;
     506             :   uint8_t *ref_frame, *buf_ptr;
     507             : 
     508             :   // Get reference frame pointer, width and height.
     509           0 :   if (plane == 0) {
     510           0 :     frame_width = ref_frame_buf->buf.y_crop_width;
     511           0 :     frame_height = ref_frame_buf->buf.y_crop_height;
     512           0 :     ref_frame = ref_frame_buf->buf.y_buffer;
     513             :   } else {
     514           0 :     frame_width = ref_frame_buf->buf.uv_crop_width;
     515           0 :     frame_height = ref_frame_buf->buf.uv_crop_height;
     516           0 :     ref_frame =
     517           0 :         plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
     518             :   }
     519             : 
     520           0 :   if (is_scaled) {
     521           0 :     const MV mv_q4 = clamp_mv_to_umv_border_sb(
     522             :         xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
     523             :     // Co-ordinate of containing block to pixel precision.
     524           0 :     int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
     525           0 :     int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
     526             : #if 0  // CONFIG_BETTER_HW_COMPATIBILITY
     527             :     assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
     528             :            xd->mi[0]->sb_type != BLOCK_8X4);
     529             :     assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
     530             :            mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
     531             : #endif
     532             :     // Co-ordinate of the block to 1/16th pixel precision.
     533           0 :     x0_16 = (x_start + x) << SUBPEL_BITS;
     534           0 :     y0_16 = (y_start + y) << SUBPEL_BITS;
     535             : 
     536             :     // Co-ordinate of current block in reference frame
     537             :     // to 1/16th pixel precision.
     538           0 :     x0_16 = sf->scale_value_x(x0_16, sf);
     539           0 :     y0_16 = sf->scale_value_y(y0_16, sf);
     540             : 
     541             :     // Map the top left corner of the block into the reference frame.
     542           0 :     x0 = sf->scale_value_x(x_start + x, sf);
     543           0 :     y0 = sf->scale_value_y(y_start + y, sf);
     544             : 
     545             :     // Scale the MV and incorporate the sub-pixel offset of the block
     546             :     // in the reference frame.
     547           0 :     scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
     548           0 :     xs = sf->x_step_q4;
     549           0 :     ys = sf->y_step_q4;
     550             :   } else {
     551             :     // Co-ordinate of containing block to pixel precision.
     552           0 :     x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
     553           0 :     y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
     554             : 
     555             :     // Co-ordinate of the block to 1/16th pixel precision.
     556           0 :     x0_16 = x0 << SUBPEL_BITS;
     557           0 :     y0_16 = y0 << SUBPEL_BITS;
     558             : 
     559           0 :     scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
     560           0 :     scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
     561           0 :     xs = ys = 16;
     562             :   }
     563           0 :   subpel_x = scaled_mv.col & SUBPEL_MASK;
     564           0 :   subpel_y = scaled_mv.row & SUBPEL_MASK;
     565             : 
     566             :   // Calculate the top left corner of the best matching block in the
     567             :   // reference frame.
     568           0 :   x0 += scaled_mv.col >> SUBPEL_BITS;
     569           0 :   y0 += scaled_mv.row >> SUBPEL_BITS;
     570           0 :   x0_16 += scaled_mv.col;
     571           0 :   y0_16 += scaled_mv.row;
     572             : 
     573             :   // Get reference block pointer.
     574           0 :   buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
     575           0 :   buf_stride = pre_buf->stride;
     576             : 
     577             :   // Do border extension if there is motion or the
     578             :   // width/height is not a multiple of 8 pixels.
     579           0 :   if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
     580           0 :       (frame_height & 0x7)) {
     581           0 :     int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
     582             : 
     583             :     // Get reference block bottom right horizontal coordinate.
     584           0 :     int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
     585           0 :     int x_pad = 0, y_pad = 0;
     586             : 
     587           0 :     if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
     588           0 :       x0 -= VP9_INTERP_EXTEND - 1;
     589           0 :       x1 += VP9_INTERP_EXTEND;
     590           0 :       x_pad = 1;
     591             :     }
     592             : 
     593           0 :     if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
     594           0 :       y0 -= VP9_INTERP_EXTEND - 1;
     595           0 :       y1 += VP9_INTERP_EXTEND;
     596           0 :       y_pad = 1;
     597             :     }
     598             : 
     599             :     // Wait until reference block is ready. Pad 7 more pixels as last 7
     600             :     // pixels of each superblock row can be changed by next superblock row.
     601           0 :     if (worker != NULL)
     602           0 :       vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
     603           0 :                                                       << (plane == 0 ? 0 : 1));
     604             : 
     605             :     // Skip border extension if block is inside the frame.
     606           0 :     if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
     607           0 :         y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
     608             :       // Extend the border.
     609           0 :       const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
     610           0 :       const int b_w = x1 - x0 + 1;
     611           0 :       const int b_h = y1 - y0 + 1;
     612           0 :       const int border_offset = y_pad * 3 * b_w + x_pad * 3;
     613             : 
     614           0 :       extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width,
     615             :                          frame_height, border_offset, dst, dst_buf->stride,
     616             :                          subpel_x, subpel_y, kernel, sf,
     617             : #if CONFIG_VP9_HIGHBITDEPTH
     618             :                          xd,
     619             : #endif
     620             :                          w, h, ref, xs, ys);
     621           0 :       return;
     622             :     }
     623             :   } else {
     624             :     // Wait until reference block is ready. Pad 7 more pixels as last 7
     625             :     // pixels of each superblock row can be changed by next superblock row.
     626           0 :     if (worker != NULL) {
     627           0 :       const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
     628           0 :       vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
     629           0 :                                                       << (plane == 0 ? 0 : 1));
     630             :     }
     631             :   }
     632             : #if CONFIG_VP9_HIGHBITDEPTH
     633             :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     634             :     highbd_inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
     635             :                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
     636             :   } else {
     637             :     inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
     638             :                     subpel_y, sf, w, h, ref, kernel, xs, ys);
     639             :   }
     640             : #else
     641           0 :   inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
     642             :                   sf, w, h, ref, kernel, xs, ys);
     643             : #endif  // CONFIG_VP9_HIGHBITDEPTH
     644             : }
     645             : 
     646           0 : static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
     647             :                                           MACROBLOCKD *xd, int mi_row,
     648             :                                           int mi_col) {
     649             :   int plane;
     650           0 :   const int mi_x = mi_col * MI_SIZE;
     651           0 :   const int mi_y = mi_row * MI_SIZE;
     652           0 :   const MODE_INFO *mi = xd->mi[0];
     653           0 :   const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
     654           0 :   const BLOCK_SIZE sb_type = mi->sb_type;
     655           0 :   const int is_compound = has_second_ref(mi);
     656             :   int ref;
     657             :   int is_scaled;
     658           0 :   VPxWorker *const fwo =
     659           0 :       pbi->frame_parallel_decode ? pbi->frame_worker_owner : NULL;
     660             : 
     661           0 :   for (ref = 0; ref < 1 + is_compound; ++ref) {
     662           0 :     const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
     663           0 :     RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
     664           0 :     const struct scale_factors *const sf = &ref_buf->sf;
     665           0 :     const int idx = ref_buf->idx;
     666           0 :     BufferPool *const pool = pbi->common.buffer_pool;
     667           0 :     RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
     668             : 
     669           0 :     if (!vp9_is_valid_scale(sf))
     670           0 :       vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
     671             :                          "Reference frame has invalid dimensions");
     672             : 
     673           0 :     is_scaled = vp9_is_scaled(sf);
     674           0 :     vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
     675             :                          is_scaled ? sf : NULL);
     676           0 :     xd->block_refs[ref] = ref_buf;
     677             : 
     678           0 :     if (sb_type < BLOCK_8X8) {
     679           0 :       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
     680           0 :         struct macroblockd_plane *const pd = &xd->plane[plane];
     681           0 :         struct buf_2d *const dst_buf = &pd->dst;
     682           0 :         const int num_4x4_w = pd->n4_w;
     683           0 :         const int num_4x4_h = pd->n4_h;
     684           0 :         const int n4w_x4 = 4 * num_4x4_w;
     685           0 :         const int n4h_x4 = 4 * num_4x4_h;
     686           0 :         struct buf_2d *const pre_buf = &pd->pre[ref];
     687           0 :         int i = 0, x, y;
     688           0 :         for (y = 0; y < num_4x4_h; ++y) {
     689           0 :           for (x = 0; x < num_4x4_w; ++x) {
     690           0 :             const MV mv = average_split_mvs(pd, mi, ref, i++);
     691           0 :             dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 4 * x,
     692             :                                        4 * y, 4, 4, mi_x, mi_y, kernel, sf,
     693             :                                        pre_buf, dst_buf, &mv, ref_frame_buf,
     694             :                                        is_scaled, ref);
     695             :           }
     696             :         }
     697             :       }
     698             :     } else {
     699           0 :       const MV mv = mi->mv[ref].as_mv;
     700           0 :       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
     701           0 :         struct macroblockd_plane *const pd = &xd->plane[plane];
     702           0 :         struct buf_2d *const dst_buf = &pd->dst;
     703           0 :         const int num_4x4_w = pd->n4_w;
     704           0 :         const int num_4x4_h = pd->n4_h;
     705           0 :         const int n4w_x4 = 4 * num_4x4_w;
     706           0 :         const int n4h_x4 = 4 * num_4x4_h;
     707           0 :         struct buf_2d *const pre_buf = &pd->pre[ref];
     708           0 :         dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
     709             :                                    n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
     710             :                                    dst_buf, &mv, ref_frame_buf, is_scaled, ref);
     711             :       }
     712             :     }
     713             :   }
     714           0 : }
     715             : 
     716           0 : static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
     717             :   int i;
     718           0 :   for (i = 0; i < MAX_MB_PLANE; i++) {
     719           0 :     struct macroblockd_plane *const pd = &xd->plane[i];
     720           0 :     memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
     721           0 :     memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
     722             :   }
     723           0 : }
     724             : 
     725           0 : static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
     726             :                          int bhl) {
     727             :   int i;
     728           0 :   for (i = 0; i < MAX_MB_PLANE; i++) {
     729           0 :     xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
     730           0 :     xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
     731           0 :     xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
     732           0 :     xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
     733             :   }
     734           0 : }
     735             : 
     736           0 : static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
     737             :                               BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
     738             :                               int bh, int x_mis, int y_mis, int bwl, int bhl) {
     739           0 :   const int offset = mi_row * cm->mi_stride + mi_col;
     740             :   int x, y;
     741           0 :   const TileInfo *const tile = &xd->tile;
     742             : 
     743           0 :   xd->mi = cm->mi_grid_visible + offset;
     744           0 :   xd->mi[0] = &cm->mi[offset];
     745             :   // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
     746             :   // passing bsize from decode_partition().
     747           0 :   xd->mi[0]->sb_type = bsize;
     748           0 :   for (y = 0; y < y_mis; ++y)
     749           0 :     for (x = !y; x < x_mis; ++x) {
     750           0 :       xd->mi[y * cm->mi_stride + x] = xd->mi[0];
     751             :     }
     752             : 
     753           0 :   set_plane_n4(xd, bw, bh, bwl, bhl);
     754             : 
     755           0 :   set_skip_context(xd, mi_row, mi_col);
     756             : 
     757             :   // Distance of Mb to the various image edges. These are specified to 8th pel
     758             :   // as they are always compared to values that are in 1/8th pel units
     759           0 :   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
     760             : 
     761           0 :   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
     762           0 :   return xd->mi[0];
     763             : }
     764             : 
     765           0 : static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
     766             :                          int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
     767           0 :   VP9_COMMON *const cm = &pbi->common;
     768           0 :   const int less8x8 = bsize < BLOCK_8X8;
     769           0 :   const int bw = 1 << (bwl - 1);
     770           0 :   const int bh = 1 << (bhl - 1);
     771           0 :   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
     772           0 :   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
     773           0 :   vpx_reader *r = &twd->bit_reader;
     774           0 :   MACROBLOCKD *const xd = &twd->xd;
     775             : 
     776           0 :   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
     777             :                               y_mis, bwl, bhl);
     778             : 
     779           0 :   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
     780           0 :     const BLOCK_SIZE uv_subsize =
     781           0 :         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
     782           0 :     if (uv_subsize == BLOCK_INVALID)
     783           0 :       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
     784             :                          "Invalid block size.");
     785             :   }
     786             : 
     787           0 :   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
     788             : 
     789           0 :   if (mi->skip) {
     790           0 :     dec_reset_skip_context(xd);
     791             :   }
     792             : 
     793           0 :   if (!is_inter_block(mi)) {
     794             :     int plane;
     795           0 :     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
     796           0 :       const struct macroblockd_plane *const pd = &xd->plane[plane];
     797           0 :       const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
     798           0 :       const int num_4x4_w = pd->n4_w;
     799           0 :       const int num_4x4_h = pd->n4_h;
     800           0 :       const int step = (1 << tx_size);
     801             :       int row, col;
     802           0 :       const int max_blocks_wide =
     803           0 :           num_4x4_w + (xd->mb_to_right_edge >= 0
     804             :                            ? 0
     805           0 :                            : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
     806           0 :       const int max_blocks_high =
     807           0 :           num_4x4_h + (xd->mb_to_bottom_edge >= 0
     808             :                            ? 0
     809           0 :                            : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
     810             : 
     811           0 :       xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
     812           0 :       xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
     813             : 
     814           0 :       for (row = 0; row < max_blocks_high; row += step)
     815           0 :         for (col = 0; col < max_blocks_wide; col += step)
     816           0 :           predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
     817             :                                               tx_size);
     818             :     }
     819             :   } else {
     820             :     // Prediction
     821           0 :     dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
     822             : 
     823             :     // Reconstruction
     824           0 :     if (!mi->skip) {
     825           0 :       int eobtotal = 0;
     826             :       int plane;
     827             : 
     828           0 :       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
     829           0 :         const struct macroblockd_plane *const pd = &xd->plane[plane];
     830           0 :         const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
     831           0 :         const int num_4x4_w = pd->n4_w;
     832           0 :         const int num_4x4_h = pd->n4_h;
     833           0 :         const int step = (1 << tx_size);
     834             :         int row, col;
     835           0 :         const int max_blocks_wide =
     836           0 :             num_4x4_w + (xd->mb_to_right_edge >= 0
     837             :                              ? 0
     838           0 :                              : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
     839           0 :         const int max_blocks_high =
     840             :             num_4x4_h +
     841           0 :             (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
     842           0 :                                                   (5 + pd->subsampling_y));
     843             : 
     844           0 :         xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
     845           0 :         xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
     846             : 
     847           0 :         for (row = 0; row < max_blocks_high; row += step)
     848           0 :           for (col = 0; col < max_blocks_wide; col += step)
     849           0 :             eobtotal +=
     850           0 :                 reconstruct_inter_block(twd, mi, plane, row, col, tx_size);
     851             :       }
     852             : 
     853           0 :       if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
     854             :     }
     855             :   }
     856             : 
     857           0 :   xd->corrupted |= vpx_reader_has_error(r);
     858             : 
     859           0 :   if (cm->lf.filter_level) {
     860           0 :     vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
     861             :   }
     862           0 : }
     863             : 
     864           0 : static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
     865             :                                               int mi_col, int bsl) {
     866           0 :   const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
     867           0 :   const PARTITION_CONTEXT *left_ctx =
     868           0 :       twd->xd.left_seg_context + (mi_row & MI_MASK);
     869           0 :   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
     870             : 
     871             :   //  assert(bsl >= 0);
     872             : 
     873           0 :   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
     874             : }
     875             : 
     876           0 : static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
     877             :                                                 int mi_col, BLOCK_SIZE subsize,
     878             :                                                 int bw) {
     879           0 :   PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
     880           0 :   PARTITION_CONTEXT *const left_ctx =
     881           0 :       twd->xd.left_seg_context + (mi_row & MI_MASK);
     882             : 
     883             :   // update the partition context at the end notes. set partition bits
     884             :   // of block sizes larger than the current one to be one, and partition
     885             :   // bits of smaller block sizes to be zero.
     886           0 :   memset(above_ctx, partition_context_lookup[subsize].above, bw);
     887           0 :   memset(left_ctx, partition_context_lookup[subsize].left, bw);
     888           0 : }
     889             : 
     890           0 : static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
     891             :                                      int mi_col, int has_rows, int has_cols,
     892             :                                      int bsl) {
     893           0 :   const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
     894           0 :   const vpx_prob *const probs = twd->xd.partition_probs[ctx];
     895           0 :   FRAME_COUNTS *counts = twd->xd.counts;
     896             :   PARTITION_TYPE p;
     897           0 :   vpx_reader *r = &twd->bit_reader;
     898             : 
     899           0 :   if (has_rows && has_cols)
     900           0 :     p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
     901           0 :   else if (!has_rows && has_cols)
     902           0 :     p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
     903           0 :   else if (has_rows && !has_cols)
     904           0 :     p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
     905             :   else
     906           0 :     p = PARTITION_SPLIT;
     907             : 
     908           0 :   if (counts) ++counts->partition[ctx][p];
     909             : 
     910           0 :   return p;
     911             : }
     912             : 
     913             : // TODO(slavarnway): eliminate bsize and subsize in future commits
     914           0 : static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
     915             :                              int mi_row, int mi_col, BLOCK_SIZE bsize,
     916             :                              int n4x4_l2) {
     917           0 :   VP9_COMMON *const cm = &pbi->common;
     918           0 :   const int n8x8_l2 = n4x4_l2 - 1;
     919           0 :   const int num_8x8_wh = 1 << n8x8_l2;
     920           0 :   const int hbs = num_8x8_wh >> 1;
     921             :   PARTITION_TYPE partition;
     922             :   BLOCK_SIZE subsize;
     923           0 :   const int has_rows = (mi_row + hbs) < cm->mi_rows;
     924           0 :   const int has_cols = (mi_col + hbs) < cm->mi_cols;
     925           0 :   MACROBLOCKD *const xd = &twd->xd;
     926             : 
     927           0 :   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
     928             : 
     929           0 :   partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
     930           0 :   subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition);
     931           0 :   if (!hbs) {
     932             :     // calculate bmode block dimensions (log 2)
     933           0 :     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
     934           0 :     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
     935           0 :     decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
     936             :   } else {
     937           0 :     switch (partition) {
     938             :       case PARTITION_NONE:
     939           0 :         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
     940           0 :         break;
     941             :       case PARTITION_HORZ:
     942           0 :         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
     943           0 :         if (has_rows)
     944           0 :           decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
     945             :                        n8x8_l2);
     946           0 :         break;
     947             :       case PARTITION_VERT:
     948           0 :         decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
     949           0 :         if (has_cols)
     950           0 :           decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
     951             :                        n4x4_l2);
     952           0 :         break;
     953             :       case PARTITION_SPLIT:
     954           0 :         decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
     955           0 :         decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
     956           0 :         decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
     957           0 :         decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
     958             :                          n8x8_l2);
     959           0 :         break;
     960           0 :       default: assert(0 && "Invalid partition type");
     961             :     }
     962             :   }
     963             : 
     964             :   // update partition context
     965           0 :   if (bsize >= BLOCK_8X8 &&
     966           0 :       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
     967           0 :     dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
     968             : }
     969             : 
     970           0 : static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
     971             :                                 size_t read_size,
     972             :                                 struct vpx_internal_error_info *error_info,
     973             :                                 vpx_reader *r, vpx_decrypt_cb decrypt_cb,
     974             :                                 void *decrypt_state) {
     975             :   // Validate the calculated partition length. If the buffer
     976             :   // described by the partition can't be fully read, then restrict
     977             :   // it to the portion that can be (for EC mode) or throw an error.
     978           0 :   if (!read_is_valid(data, read_size, data_end))
     979           0 :     vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
     980             :                        "Truncated packet or corrupt tile length");
     981             : 
     982           0 :   if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
     983           0 :     vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
     984             :                        "Failed to allocate bool decoder %d", 1);
     985           0 : }
     986             : 
     987           0 : static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
     988             :                                    vpx_reader *r) {
     989             :   int i, j, k, l, m;
     990             : 
     991           0 :   if (vpx_read_bit(r))
     992           0 :     for (i = 0; i < PLANE_TYPES; ++i)
     993           0 :       for (j = 0; j < REF_TYPES; ++j)
     994           0 :         for (k = 0; k < COEF_BANDS; ++k)
     995           0 :           for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
     996           0 :             for (m = 0; m < UNCONSTRAINED_NODES; ++m)
     997           0 :               vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
     998           0 : }
     999             : 
    1000           0 : static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
    1001           0 :   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
    1002             :   TX_SIZE tx_size;
    1003           0 :   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
    1004           0 :     read_coef_probs_common(fc->coef_probs[tx_size], r);
    1005           0 : }
    1006             : 
    1007           0 : static void setup_segmentation(struct segmentation *seg,
    1008             :                                struct vpx_read_bit_buffer *rb) {
    1009             :   int i, j;
    1010             : 
    1011           0 :   seg->update_map = 0;
    1012           0 :   seg->update_data = 0;
    1013             : 
    1014           0 :   seg->enabled = vpx_rb_read_bit(rb);
    1015           0 :   if (!seg->enabled) return;
    1016             : 
    1017             :   // Segmentation map update
    1018           0 :   seg->update_map = vpx_rb_read_bit(rb);
    1019           0 :   if (seg->update_map) {
    1020           0 :     for (i = 0; i < SEG_TREE_PROBS; i++)
    1021           0 :       seg->tree_probs[i] =
    1022           0 :           vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
    1023             : 
    1024           0 :     seg->temporal_update = vpx_rb_read_bit(rb);
    1025           0 :     if (seg->temporal_update) {
    1026           0 :       for (i = 0; i < PREDICTION_PROBS; i++)
    1027           0 :         seg->pred_probs[i] =
    1028           0 :             vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
    1029             :     } else {
    1030           0 :       for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
    1031             :     }
    1032             :   }
    1033             : 
    1034             :   // Segmentation data update
    1035           0 :   seg->update_data = vpx_rb_read_bit(rb);
    1036           0 :   if (seg->update_data) {
    1037           0 :     seg->abs_delta = vpx_rb_read_bit(rb);
    1038             : 
    1039           0 :     vp9_clearall_segfeatures(seg);
    1040             : 
    1041           0 :     for (i = 0; i < MAX_SEGMENTS; i++) {
    1042           0 :       for (j = 0; j < SEG_LVL_MAX; j++) {
    1043           0 :         int data = 0;
    1044           0 :         const int feature_enabled = vpx_rb_read_bit(rb);
    1045           0 :         if (feature_enabled) {
    1046           0 :           vp9_enable_segfeature(seg, i, j);
    1047           0 :           data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
    1048           0 :           if (vp9_is_segfeature_signed(j))
    1049           0 :             data = vpx_rb_read_bit(rb) ? -data : data;
    1050             :         }
    1051           0 :         vp9_set_segdata(seg, i, j, data);
    1052             :       }
    1053             :     }
    1054             :   }
    1055             : }
    1056             : 
    1057           0 : static void setup_loopfilter(struct loopfilter *lf,
    1058             :                              struct vpx_read_bit_buffer *rb) {
    1059           0 :   lf->filter_level = vpx_rb_read_literal(rb, 6);
    1060           0 :   lf->sharpness_level = vpx_rb_read_literal(rb, 3);
    1061             : 
    1062             :   // Read in loop filter deltas applied at the MB level based on mode or ref
    1063             :   // frame.
    1064           0 :   lf->mode_ref_delta_update = 0;
    1065             : 
    1066           0 :   lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
    1067           0 :   if (lf->mode_ref_delta_enabled) {
    1068           0 :     lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
    1069           0 :     if (lf->mode_ref_delta_update) {
    1070             :       int i;
    1071             : 
    1072           0 :       for (i = 0; i < MAX_REF_LF_DELTAS; i++)
    1073           0 :         if (vpx_rb_read_bit(rb))
    1074           0 :           lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
    1075             : 
    1076           0 :       for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
    1077           0 :         if (vpx_rb_read_bit(rb))
    1078           0 :           lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
    1079             :     }
    1080             :   }
    1081           0 : }
    1082             : 
    1083           0 : static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
    1084           0 :   return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
    1085             : }
    1086             : 
    1087           0 : static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
    1088             :                                struct vpx_read_bit_buffer *rb) {
    1089           0 :   cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
    1090           0 :   cm->y_dc_delta_q = read_delta_q(rb);
    1091           0 :   cm->uv_dc_delta_q = read_delta_q(rb);
    1092           0 :   cm->uv_ac_delta_q = read_delta_q(rb);
    1093           0 :   cm->dequant_bit_depth = cm->bit_depth;
    1094           0 :   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
    1095           0 :                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
    1096             : 
    1097             : #if CONFIG_VP9_HIGHBITDEPTH
    1098             :   xd->bd = (int)cm->bit_depth;
    1099             : #endif
    1100           0 : }
    1101             : 
    1102           0 : static void setup_segmentation_dequant(VP9_COMMON *const cm) {
    1103             :   // Build y/uv dequant values based on segmentation.
    1104           0 :   if (cm->seg.enabled) {
    1105             :     int i;
    1106           0 :     for (i = 0; i < MAX_SEGMENTS; ++i) {
    1107           0 :       const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
    1108           0 :       cm->y_dequant[i][0] =
    1109           0 :           vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
    1110           0 :       cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
    1111           0 :       cm->uv_dequant[i][0] =
    1112           0 :           vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
    1113           0 :       cm->uv_dequant[i][1] =
    1114           0 :           vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
    1115             :     }
    1116             :   } else {
    1117           0 :     const int qindex = cm->base_qindex;
    1118             :     // When segmentation is disabled, only the first value is used.  The
    1119             :     // remaining are don't cares.
    1120           0 :     cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
    1121           0 :     cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
    1122           0 :     cm->uv_dequant[0][0] =
    1123           0 :         vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
    1124           0 :     cm->uv_dequant[0][1] =
    1125           0 :         vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
    1126             :   }
    1127           0 : }
    1128             : 
    1129           0 : static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
    1130           0 :   const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
    1131             :                                               EIGHTTAP_SHARP, BILINEAR };
    1132           0 :   return vpx_rb_read_bit(rb) ? SWITCHABLE
    1133           0 :                              : literal_to_filter[vpx_rb_read_literal(rb, 2)];
    1134             : }
    1135             : 
    1136           0 : static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
    1137           0 :   cm->render_width = cm->width;
    1138           0 :   cm->render_height = cm->height;
    1139           0 :   if (vpx_rb_read_bit(rb))
    1140           0 :     vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
    1141           0 : }
    1142             : 
    1143           0 : static void resize_mv_buffer(VP9_COMMON *cm) {
    1144           0 :   vpx_free(cm->cur_frame->mvs);
    1145           0 :   cm->cur_frame->mi_rows = cm->mi_rows;
    1146           0 :   cm->cur_frame->mi_cols = cm->mi_cols;
    1147           0 :   CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
    1148             :                   (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
    1149             :                                        sizeof(*cm->cur_frame->mvs)));
    1150           0 : }
    1151             : 
    1152           0 : static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
    1153             : #if CONFIG_SIZE_LIMIT
    1154           0 :   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
    1155           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1156             :                        "Dimensions of %dx%d beyond allowed size of %dx%d.",
    1157             :                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
    1158             : #endif
    1159           0 :   if (cm->width != width || cm->height != height) {
    1160           0 :     const int new_mi_rows =
    1161           0 :         ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
    1162           0 :     const int new_mi_cols =
    1163           0 :         ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
    1164             : 
    1165             :     // Allocations in vp9_alloc_context_buffers() depend on individual
    1166             :     // dimensions as well as the overall size.
    1167           0 :     if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
    1168           0 :       if (vp9_alloc_context_buffers(cm, width, height))
    1169           0 :         vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
    1170             :                            "Failed to allocate context buffers");
    1171             :     } else {
    1172           0 :       vp9_set_mb_mi(cm, width, height);
    1173             :     }
    1174           0 :     vp9_init_context_buffers(cm);
    1175           0 :     cm->width = width;
    1176           0 :     cm->height = height;
    1177             :   }
    1178           0 :   if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
    1179           0 :       cm->mi_cols > cm->cur_frame->mi_cols) {
    1180           0 :     resize_mv_buffer(cm);
    1181             :   }
    1182           0 : }
    1183             : 
    1184           0 : static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
    1185             :   int width, height;
    1186           0 :   BufferPool *const pool = cm->buffer_pool;
    1187           0 :   vp9_read_frame_size(rb, &width, &height);
    1188           0 :   resize_context_buffers(cm, width, height);
    1189           0 :   setup_render_size(cm, rb);
    1190             : 
    1191           0 :   lock_buffer_pool(pool);
    1192           0 :   if (vpx_realloc_frame_buffer(
    1193             :           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
    1194             :           cm->subsampling_y,
    1195             : #if CONFIG_VP9_HIGHBITDEPTH
    1196             :           cm->use_highbitdepth,
    1197             : #endif
    1198             :           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
    1199           0 :           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
    1200             :           pool->cb_priv)) {
    1201           0 :     unlock_buffer_pool(pool);
    1202           0 :     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
    1203             :                        "Failed to allocate frame buffer");
    1204             :   }
    1205           0 :   unlock_buffer_pool(pool);
    1206             : 
    1207           0 :   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
    1208           0 :   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
    1209           0 :   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
    1210           0 :   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
    1211           0 :   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
    1212           0 :   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
    1213           0 :   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
    1214           0 : }
    1215             : 
    1216           0 : static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
    1217             :                                           int ref_xss, int ref_yss,
    1218             :                                           vpx_bit_depth_t this_bit_depth,
    1219             :                                           int this_xss, int this_yss) {
    1220           0 :   return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
    1221             :          ref_yss == this_yss;
    1222             : }
    1223             : 
    1224           0 : static void setup_frame_size_with_refs(VP9_COMMON *cm,
    1225             :                                        struct vpx_read_bit_buffer *rb) {
    1226             :   int width, height;
    1227           0 :   int found = 0, i;
    1228           0 :   int has_valid_ref_frame = 0;
    1229           0 :   BufferPool *const pool = cm->buffer_pool;
    1230           0 :   for (i = 0; i < REFS_PER_FRAME; ++i) {
    1231           0 :     if (vpx_rb_read_bit(rb)) {
    1232           0 :       if (cm->frame_refs[i].idx != INVALID_IDX) {
    1233           0 :         YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
    1234           0 :         width = buf->y_crop_width;
    1235           0 :         height = buf->y_crop_height;
    1236           0 :         found = 1;
    1237           0 :         break;
    1238             :       } else {
    1239           0 :         vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1240             :                            "Failed to decode frame size");
    1241             :       }
    1242             :     }
    1243             :   }
    1244             : 
    1245           0 :   if (!found) vp9_read_frame_size(rb, &width, &height);
    1246             : 
    1247           0 :   if (width <= 0 || height <= 0)
    1248           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1249             :                        "Invalid frame size");
    1250             : 
    1251             :   // Check to make sure at least one of frames that this frame references
    1252             :   // has valid dimensions.
    1253           0 :   for (i = 0; i < REFS_PER_FRAME; ++i) {
    1254           0 :     RefBuffer *const ref_frame = &cm->frame_refs[i];
    1255           0 :     has_valid_ref_frame |=
    1256           0 :         (ref_frame->idx != INVALID_IDX &&
    1257           0 :          valid_ref_frame_size(ref_frame->buf->y_crop_width,
    1258           0 :                               ref_frame->buf->y_crop_height, width, height));
    1259             :   }
    1260           0 :   if (!has_valid_ref_frame)
    1261           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1262             :                        "Referenced frame has invalid size");
    1263           0 :   for (i = 0; i < REFS_PER_FRAME; ++i) {
    1264           0 :     RefBuffer *const ref_frame = &cm->frame_refs[i];
    1265           0 :     if (ref_frame->idx == INVALID_IDX ||
    1266           0 :         !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
    1267           0 :                                  ref_frame->buf->subsampling_x,
    1268           0 :                                  ref_frame->buf->subsampling_y, cm->bit_depth,
    1269             :                                  cm->subsampling_x, cm->subsampling_y))
    1270           0 :       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1271             :                          "Referenced frame has incompatible color format");
    1272             :   }
    1273             : 
    1274           0 :   resize_context_buffers(cm, width, height);
    1275           0 :   setup_render_size(cm, rb);
    1276             : 
    1277           0 :   lock_buffer_pool(pool);
    1278           0 :   if (vpx_realloc_frame_buffer(
    1279             :           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
    1280             :           cm->subsampling_y,
    1281             : #if CONFIG_VP9_HIGHBITDEPTH
    1282             :           cm->use_highbitdepth,
    1283             : #endif
    1284             :           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
    1285           0 :           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
    1286             :           pool->cb_priv)) {
    1287           0 :     unlock_buffer_pool(pool);
    1288           0 :     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
    1289             :                        "Failed to allocate frame buffer");
    1290             :   }
    1291           0 :   unlock_buffer_pool(pool);
    1292             : 
    1293           0 :   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
    1294           0 :   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
    1295           0 :   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
    1296           0 :   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
    1297           0 :   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
    1298           0 :   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
    1299           0 :   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
    1300           0 : }
    1301             : 
    1302           0 : static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
    1303             :   int min_log2_tile_cols, max_log2_tile_cols, max_ones;
    1304           0 :   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
    1305             : 
    1306             :   // columns
    1307           0 :   max_ones = max_log2_tile_cols - min_log2_tile_cols;
    1308           0 :   cm->log2_tile_cols = min_log2_tile_cols;
    1309           0 :   while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
    1310             : 
    1311           0 :   if (cm->log2_tile_cols > 6)
    1312           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1313             :                        "Invalid number of tile columns");
    1314             : 
    1315             :   // rows
    1316           0 :   cm->log2_tile_rows = vpx_rb_read_bit(rb);
    1317           0 :   if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
    1318           0 : }
    1319             : 
    1320             : // Reads the next tile returning its size and adjusting '*data' accordingly
    1321             : // based on 'is_last'.
    1322           0 : static void get_tile_buffer(const uint8_t *const data_end, int is_last,
    1323             :                             struct vpx_internal_error_info *error_info,
    1324             :                             const uint8_t **data, vpx_decrypt_cb decrypt_cb,
    1325             :                             void *decrypt_state, TileBuffer *buf) {
    1326             :   size_t size;
    1327             : 
    1328           0 :   if (!is_last) {
    1329           0 :     if (!read_is_valid(*data, 4, data_end))
    1330           0 :       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
    1331             :                          "Truncated packet or corrupt tile length");
    1332             : 
    1333           0 :     if (decrypt_cb) {
    1334             :       uint8_t be_data[4];
    1335           0 :       decrypt_cb(decrypt_state, *data, be_data, 4);
    1336           0 :       size = mem_get_be32(be_data);
    1337             :     } else {
    1338           0 :       size = mem_get_be32(*data);
    1339             :     }
    1340           0 :     *data += 4;
    1341             : 
    1342           0 :     if (size > (size_t)(data_end - *data))
    1343           0 :       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
    1344             :                          "Truncated packet or corrupt tile size");
    1345             :   } else {
    1346           0 :     size = data_end - *data;
    1347             :   }
    1348             : 
    1349           0 :   buf->data = *data;
    1350           0 :   buf->size = size;
    1351             : 
    1352           0 :   *data += size;
    1353           0 : }
    1354             : 
    1355           0 : static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
    1356             :                              const uint8_t *data_end, int tile_cols,
    1357             :                              int tile_rows,
    1358             :                              TileBuffer (*tile_buffers)[1 << 6]) {
    1359             :   int r, c;
    1360             : 
    1361           0 :   for (r = 0; r < tile_rows; ++r) {
    1362           0 :     for (c = 0; c < tile_cols; ++c) {
    1363           0 :       const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
    1364           0 :       TileBuffer *const buf = &tile_buffers[r][c];
    1365           0 :       buf->col = c;
    1366           0 :       get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
    1367             :                       pbi->decrypt_cb, pbi->decrypt_state, buf);
    1368             :     }
    1369             :   }
    1370           0 : }
    1371             : 
    1372           0 : static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
    1373             :                                    const uint8_t *data_end) {
    1374           0 :   VP9_COMMON *const cm = &pbi->common;
    1375           0 :   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
    1376           0 :   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
    1377           0 :   const int tile_cols = 1 << cm->log2_tile_cols;
    1378           0 :   const int tile_rows = 1 << cm->log2_tile_rows;
    1379             :   TileBuffer tile_buffers[4][1 << 6];
    1380             :   int tile_row, tile_col;
    1381             :   int mi_row, mi_col;
    1382           0 :   TileWorkerData *tile_data = NULL;
    1383             : 
    1384           0 :   if (cm->lf.filter_level && !cm->skip_loop_filter &&
    1385           0 :       pbi->lf_worker.data1 == NULL) {
    1386           0 :     CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
    1387             :                     vpx_memalign(32, sizeof(LFWorkerData)));
    1388           0 :     pbi->lf_worker.hook = (VPxWorkerHook)vp9_loop_filter_worker;
    1389           0 :     if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
    1390           0 :       vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
    1391             :                          "Loop filter thread creation failed");
    1392             :     }
    1393             :   }
    1394             : 
    1395           0 :   if (cm->lf.filter_level && !cm->skip_loop_filter) {
    1396           0 :     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
    1397             :     // Be sure to sync as we might be resuming after a failed frame decode.
    1398           0 :     winterface->sync(&pbi->lf_worker);
    1399           0 :     vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
    1400           0 :                                pbi->mb.plane);
    1401             :   }
    1402             : 
    1403           0 :   assert(tile_rows <= 4);
    1404           0 :   assert(tile_cols <= (1 << 6));
    1405             : 
    1406             :   // Note: this memset assumes above_context[0], [1] and [2]
    1407             :   // are allocated as part of the same buffer.
    1408           0 :   memset(cm->above_context, 0,
    1409             :          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
    1410             : 
    1411           0 :   memset(cm->above_seg_context, 0,
    1412             :          sizeof(*cm->above_seg_context) * aligned_cols);
    1413             : 
    1414           0 :   vp9_reset_lfm(cm);
    1415             : 
    1416           0 :   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
    1417             : 
    1418             :   // Load all tile information into tile_data.
    1419           0 :   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
    1420           0 :     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
    1421           0 :       const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
    1422           0 :       tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
    1423           0 :       tile_data->xd = pbi->mb;
    1424           0 :       tile_data->xd.corrupted = 0;
    1425           0 :       tile_data->xd.counts =
    1426           0 :           cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
    1427           0 :       vp9_zero(tile_data->dqcoeff);
    1428           0 :       vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
    1429           0 :       setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
    1430             :                           &tile_data->bit_reader, pbi->decrypt_cb,
    1431             :                           pbi->decrypt_state);
    1432           0 :       vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
    1433             :     }
    1434             :   }
    1435             : 
    1436           0 :   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
    1437             :     TileInfo tile;
    1438           0 :     vp9_tile_set_row(&tile, cm, tile_row);
    1439           0 :     for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
    1440           0 :          mi_row += MI_BLOCK_SIZE) {
    1441           0 :       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
    1442           0 :         const int col =
    1443           0 :             pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
    1444           0 :         tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
    1445           0 :         vp9_tile_set_col(&tile, cm, col);
    1446           0 :         vp9_zero(tile_data->xd.left_context);
    1447           0 :         vp9_zero(tile_data->xd.left_seg_context);
    1448           0 :         for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
    1449           0 :              mi_col += MI_BLOCK_SIZE) {
    1450           0 :           decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
    1451             :         }
    1452           0 :         pbi->mb.corrupted |= tile_data->xd.corrupted;
    1453           0 :         if (pbi->mb.corrupted)
    1454           0 :           vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1455             :                              "Failed to decode tile data");
    1456             :       }
    1457             :       // Loopfilter one row.
    1458           0 :       if (cm->lf.filter_level && !cm->skip_loop_filter) {
    1459           0 :         const int lf_start = mi_row - MI_BLOCK_SIZE;
    1460           0 :         LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
    1461             : 
    1462             :         // delay the loopfilter by 1 macroblock row.
    1463           0 :         if (lf_start < 0) continue;
    1464             : 
    1465             :         // decoding has completed: finish up the loop filter in this thread.
    1466           0 :         if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
    1467             : 
    1468           0 :         winterface->sync(&pbi->lf_worker);
    1469           0 :         lf_data->start = lf_start;
    1470           0 :         lf_data->stop = mi_row;
    1471           0 :         if (pbi->max_threads > 1) {
    1472           0 :           winterface->launch(&pbi->lf_worker);
    1473             :         } else {
    1474           0 :           winterface->execute(&pbi->lf_worker);
    1475             :         }
    1476             :       }
    1477             :       // After loopfiltering, the last 7 row pixels in each superblock row may
    1478             :       // still be changed by the longest loopfilter of the next superblock
    1479             :       // row.
    1480           0 :       if (pbi->frame_parallel_decode)
    1481           0 :         vp9_frameworker_broadcast(pbi->cur_buf, mi_row << MI_BLOCK_SIZE_LOG2);
    1482             :     }
    1483             :   }
    1484             : 
    1485             :   // Loopfilter remaining rows in the frame.
    1486           0 :   if (cm->lf.filter_level && !cm->skip_loop_filter) {
    1487           0 :     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
    1488           0 :     winterface->sync(&pbi->lf_worker);
    1489           0 :     lf_data->start = lf_data->stop;
    1490           0 :     lf_data->stop = cm->mi_rows;
    1491           0 :     winterface->execute(&pbi->lf_worker);
    1492             :   }
    1493             : 
    1494             :   // Get last tile data.
    1495           0 :   tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
    1496             : 
    1497           0 :   if (pbi->frame_parallel_decode)
    1498           0 :     vp9_frameworker_broadcast(pbi->cur_buf, INT_MAX);
    1499           0 :   return vpx_reader_find_end(&tile_data->bit_reader);
    1500             : }
    1501             : 
    1502             : // On entry 'tile_data->data_end' points to the end of the input frame, on exit
    1503             : // it is updated to reflect the bitreader position of the final tile column if
    1504             : // present in the tile buffer group or NULL otherwise.
    1505           0 : static int tile_worker_hook(TileWorkerData *const tile_data,
    1506             :                             VP9Decoder *const pbi) {
    1507           0 :   TileInfo *volatile tile = &tile_data->xd.tile;
    1508           0 :   const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
    1509           0 :   const uint8_t *volatile bit_reader_end = NULL;
    1510           0 :   volatile int n = tile_data->buf_start;
    1511           0 :   tile_data->error_info.setjmp = 1;
    1512             : 
    1513           0 :   if (setjmp(tile_data->error_info.jmp)) {
    1514           0 :     tile_data->error_info.setjmp = 0;
    1515           0 :     tile_data->xd.corrupted = 1;
    1516           0 :     tile_data->data_end = NULL;
    1517           0 :     return 0;
    1518             :   }
    1519             : 
    1520           0 :   tile_data->xd.corrupted = 0;
    1521             : 
    1522             :   do {
    1523             :     int mi_row, mi_col;
    1524           0 :     const TileBuffer *const buf = pbi->tile_buffers + n;
    1525           0 :     vp9_zero(tile_data->dqcoeff);
    1526           0 :     vp9_tile_init(tile, &pbi->common, 0, buf->col);
    1527           0 :     setup_token_decoder(buf->data, tile_data->data_end, buf->size,
    1528             :                         &tile_data->error_info, &tile_data->bit_reader,
    1529             :                         pbi->decrypt_cb, pbi->decrypt_state);
    1530           0 :     vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
    1531             :     // init resets xd.error_info
    1532           0 :     tile_data->xd.error_info = &tile_data->error_info;
    1533             : 
    1534           0 :     for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
    1535           0 :          mi_row += MI_BLOCK_SIZE) {
    1536           0 :       vp9_zero(tile_data->xd.left_context);
    1537           0 :       vp9_zero(tile_data->xd.left_seg_context);
    1538           0 :       for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
    1539           0 :            mi_col += MI_BLOCK_SIZE) {
    1540           0 :         decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
    1541             :       }
    1542             :     }
    1543             : 
    1544           0 :     if (buf->col == final_col) {
    1545           0 :       bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
    1546             :     }
    1547           0 :   } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
    1548             : 
    1549           0 :   tile_data->data_end = bit_reader_end;
    1550           0 :   return !tile_data->xd.corrupted;
    1551             : }
    1552             : 
    1553             : // sorts in descending order
    1554           0 : static int compare_tile_buffers(const void *a, const void *b) {
    1555           0 :   const TileBuffer *const buf1 = (const TileBuffer *)a;
    1556           0 :   const TileBuffer *const buf2 = (const TileBuffer *)b;
    1557           0 :   return (int)(buf2->size - buf1->size);
    1558             : }
    1559             : 
    1560           0 : static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
    1561             :                                       const uint8_t *data_end) {
    1562           0 :   VP9_COMMON *const cm = &pbi->common;
    1563           0 :   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
    1564           0 :   const uint8_t *bit_reader_end = NULL;
    1565           0 :   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
    1566           0 :   const int tile_cols = 1 << cm->log2_tile_cols;
    1567           0 :   const int tile_rows = 1 << cm->log2_tile_rows;
    1568           0 :   const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
    1569             :   int n;
    1570             : 
    1571           0 :   assert(tile_cols <= (1 << 6));
    1572           0 :   assert(tile_rows == 1);
    1573             :   (void)tile_rows;
    1574             : 
    1575           0 :   if (pbi->num_tile_workers == 0) {
    1576           0 :     const int num_threads = pbi->max_threads;
    1577           0 :     CHECK_MEM_ERROR(cm, pbi->tile_workers,
    1578             :                     vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
    1579           0 :     for (n = 0; n < num_threads; ++n) {
    1580           0 :       VPxWorker *const worker = &pbi->tile_workers[n];
    1581           0 :       ++pbi->num_tile_workers;
    1582             : 
    1583           0 :       winterface->init(worker);
    1584           0 :       if (n < num_threads - 1 && !winterface->reset(worker)) {
    1585           0 :         vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
    1586             :                            "Tile decoder thread creation failed");
    1587             :       }
    1588             :     }
    1589             :   }
    1590             : 
    1591             :   // Reset tile decoding hook
    1592           0 :   for (n = 0; n < num_workers; ++n) {
    1593           0 :     VPxWorker *const worker = &pbi->tile_workers[n];
    1594           0 :     TileWorkerData *const tile_data =
    1595           0 :         &pbi->tile_worker_data[n + pbi->total_tiles];
    1596           0 :     winterface->sync(worker);
    1597           0 :     tile_data->xd = pbi->mb;
    1598           0 :     tile_data->xd.counts =
    1599           0 :         cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
    1600           0 :     worker->hook = (VPxWorkerHook)tile_worker_hook;
    1601           0 :     worker->data1 = tile_data;
    1602           0 :     worker->data2 = pbi;
    1603             :   }
    1604             : 
    1605             :   // Note: this memset assumes above_context[0], [1] and [2]
    1606             :   // are allocated as part of the same buffer.
    1607           0 :   memset(cm->above_context, 0,
    1608             :          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
    1609           0 :   memset(cm->above_seg_context, 0,
    1610             :          sizeof(*cm->above_seg_context) * aligned_mi_cols);
    1611             : 
    1612           0 :   vp9_reset_lfm(cm);
    1613             : 
    1614             :   // Load tile data into tile_buffers
    1615           0 :   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
    1616             :                    &pbi->tile_buffers);
    1617             : 
    1618             :   // Sort the buffers based on size in descending order.
    1619           0 :   qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
    1620             :         compare_tile_buffers);
    1621             : 
    1622           0 :   if (num_workers == tile_cols) {
    1623             :     // Rearrange the tile buffers such that the largest, and
    1624             :     // presumably the most difficult, tile will be decoded in the main thread.
    1625             :     // This should help minimize the number of instances where the main thread
    1626             :     // is waiting for a worker to complete.
    1627           0 :     const TileBuffer largest = pbi->tile_buffers[0];
    1628           0 :     memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
    1629           0 :             (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
    1630           0 :     pbi->tile_buffers[tile_cols - 1] = largest;
    1631             :   } else {
    1632           0 :     int start = 0, end = tile_cols - 2;
    1633             :     TileBuffer tmp;
    1634             : 
    1635             :     // Interleave the tiles to distribute the load between threads, assuming a
    1636             :     // larger tile implies it is more difficult to decode.
    1637           0 :     while (start < end) {
    1638           0 :       tmp = pbi->tile_buffers[start];
    1639           0 :       pbi->tile_buffers[start] = pbi->tile_buffers[end];
    1640           0 :       pbi->tile_buffers[end] = tmp;
    1641           0 :       start += 2;
    1642           0 :       end -= 2;
    1643             :     }
    1644             :   }
    1645             : 
    1646             :   // Initialize thread frame counts.
    1647           0 :   if (!cm->frame_parallel_decoding_mode) {
    1648           0 :     for (n = 0; n < num_workers; ++n) {
    1649           0 :       TileWorkerData *const tile_data =
    1650           0 :           (TileWorkerData *)pbi->tile_workers[n].data1;
    1651           0 :       vp9_zero(tile_data->counts);
    1652             :     }
    1653             :   }
    1654             : 
    1655             :   {
    1656           0 :     const int base = tile_cols / num_workers;
    1657           0 :     const int remain = tile_cols % num_workers;
    1658           0 :     int buf_start = 0;
    1659             : 
    1660           0 :     for (n = 0; n < num_workers; ++n) {
    1661           0 :       const int count = base + (remain + n) / num_workers;
    1662           0 :       VPxWorker *const worker = &pbi->tile_workers[n];
    1663           0 :       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
    1664             : 
    1665           0 :       tile_data->buf_start = buf_start;
    1666           0 :       tile_data->buf_end = buf_start + count - 1;
    1667           0 :       tile_data->data_end = data_end;
    1668           0 :       buf_start += count;
    1669             : 
    1670           0 :       worker->had_error = 0;
    1671           0 :       if (n == num_workers - 1) {
    1672           0 :         assert(tile_data->buf_end == tile_cols - 1);
    1673           0 :         winterface->execute(worker);
    1674             :       } else {
    1675           0 :         winterface->launch(worker);
    1676             :       }
    1677             :     }
    1678             : 
    1679           0 :     for (; n > 0; --n) {
    1680           0 :       VPxWorker *const worker = &pbi->tile_workers[n - 1];
    1681           0 :       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
    1682             :       // TODO(jzern): The tile may have specific error data associated with
    1683             :       // its vpx_internal_error_info which could be propagated to the main info
    1684             :       // in cm. Additionally once the threads have been synced and an error is
    1685             :       // detected, there's no point in continuing to decode tiles.
    1686           0 :       pbi->mb.corrupted |= !winterface->sync(worker);
    1687           0 :       if (!bit_reader_end) bit_reader_end = tile_data->data_end;
    1688             :     }
    1689             :   }
    1690             : 
    1691             :   // Accumulate thread frame counts.
    1692           0 :   if (!cm->frame_parallel_decoding_mode) {
    1693           0 :     for (n = 0; n < num_workers; ++n) {
    1694           0 :       TileWorkerData *const tile_data =
    1695           0 :           (TileWorkerData *)pbi->tile_workers[n].data1;
    1696           0 :       vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
    1697             :     }
    1698             :   }
    1699             : 
    1700           0 :   assert(bit_reader_end || pbi->mb.corrupted);
    1701           0 :   return bit_reader_end;
    1702             : }
    1703             : 
    1704           0 : static void error_handler(void *data) {
    1705           0 :   VP9_COMMON *const cm = (VP9_COMMON *)data;
    1706           0 :   vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
    1707           0 : }
    1708             : 
    1709           0 : static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
    1710             :                                               struct vpx_read_bit_buffer *rb) {
    1711           0 :   if (cm->profile >= PROFILE_2) {
    1712           0 :     cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
    1713             : #if CONFIG_VP9_HIGHBITDEPTH
    1714             :     cm->use_highbitdepth = 1;
    1715             : #endif
    1716             :   } else {
    1717           0 :     cm->bit_depth = VPX_BITS_8;
    1718             : #if CONFIG_VP9_HIGHBITDEPTH
    1719             :     cm->use_highbitdepth = 0;
    1720             : #endif
    1721             :   }
    1722           0 :   cm->color_space = vpx_rb_read_literal(rb, 3);
    1723           0 :   if (cm->color_space != VPX_CS_SRGB) {
    1724           0 :     cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
    1725           0 :     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
    1726           0 :       cm->subsampling_x = vpx_rb_read_bit(rb);
    1727           0 :       cm->subsampling_y = vpx_rb_read_bit(rb);
    1728           0 :       if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
    1729           0 :         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1730             :                            "4:2:0 color not supported in profile 1 or 3");
    1731           0 :       if (vpx_rb_read_bit(rb))
    1732           0 :         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1733             :                            "Reserved bit set");
    1734             :     } else {
    1735           0 :       cm->subsampling_y = cm->subsampling_x = 1;
    1736             :     }
    1737             :   } else {
    1738           0 :     cm->color_range = VPX_CR_FULL_RANGE;
    1739           0 :     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
    1740             :       // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
    1741             :       // 4:2:2 or 4:4:0 chroma sampling is not allowed.
    1742           0 :       cm->subsampling_y = cm->subsampling_x = 0;
    1743           0 :       if (vpx_rb_read_bit(rb))
    1744           0 :         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1745             :                            "Reserved bit set");
    1746             :     } else {
    1747           0 :       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1748             :                          "4:4:4 color not supported in profile 0 or 2");
    1749             :     }
    1750             :   }
    1751           0 : }
    1752             : 
    1753           0 : static size_t read_uncompressed_header(VP9Decoder *pbi,
    1754             :                                        struct vpx_read_bit_buffer *rb) {
    1755           0 :   VP9_COMMON *const cm = &pbi->common;
    1756           0 :   BufferPool *const pool = cm->buffer_pool;
    1757           0 :   RefCntBuffer *const frame_bufs = pool->frame_bufs;
    1758           0 :   int i, mask, ref_index = 0;
    1759             :   size_t sz;
    1760             : 
    1761           0 :   cm->last_frame_type = cm->frame_type;
    1762           0 :   cm->last_intra_only = cm->intra_only;
    1763             : 
    1764           0 :   if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
    1765           0 :     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1766             :                        "Invalid frame marker");
    1767             : 
    1768           0 :   cm->profile = vp9_read_profile(rb);
    1769             : #if CONFIG_VP9_HIGHBITDEPTH
    1770             :   if (cm->profile >= MAX_PROFILES)
    1771             :     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1772             :                        "Unsupported bitstream profile");
    1773             : #else
    1774           0 :   if (cm->profile >= PROFILE_2)
    1775           0 :     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1776             :                        "Unsupported bitstream profile");
    1777             : #endif
    1778             : 
    1779           0 :   cm->show_existing_frame = vpx_rb_read_bit(rb);
    1780           0 :   if (cm->show_existing_frame) {
    1781             :     // Show an existing frame directly.
    1782           0 :     const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
    1783           0 :     lock_buffer_pool(pool);
    1784           0 :     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
    1785           0 :       unlock_buffer_pool(pool);
    1786           0 :       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1787             :                          "Buffer %d does not contain a decoded frame",
    1788             :                          frame_to_show);
    1789             :     }
    1790             : 
    1791           0 :     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
    1792           0 :     unlock_buffer_pool(pool);
    1793           0 :     pbi->refresh_frame_flags = 0;
    1794           0 :     cm->lf.filter_level = 0;
    1795           0 :     cm->show_frame = 1;
    1796             : 
    1797           0 :     if (pbi->frame_parallel_decode) {
    1798           0 :       for (i = 0; i < REF_FRAMES; ++i)
    1799           0 :         cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
    1800             :     }
    1801           0 :     return 0;
    1802             :   }
    1803             : 
    1804           0 :   cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
    1805           0 :   cm->show_frame = vpx_rb_read_bit(rb);
    1806           0 :   cm->error_resilient_mode = vpx_rb_read_bit(rb);
    1807             : 
    1808           0 :   if (cm->frame_type == KEY_FRAME) {
    1809           0 :     if (!vp9_read_sync_code(rb))
    1810           0 :       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1811             :                          "Invalid frame sync code");
    1812             : 
    1813           0 :     read_bitdepth_colorspace_sampling(cm, rb);
    1814           0 :     pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
    1815             : 
    1816           0 :     for (i = 0; i < REFS_PER_FRAME; ++i) {
    1817           0 :       cm->frame_refs[i].idx = INVALID_IDX;
    1818           0 :       cm->frame_refs[i].buf = NULL;
    1819             :     }
    1820             : 
    1821           0 :     setup_frame_size(cm, rb);
    1822           0 :     if (pbi->need_resync) {
    1823           0 :       memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
    1824           0 :       pbi->need_resync = 0;
    1825             :     }
    1826             :   } else {
    1827           0 :     cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
    1828             : 
    1829           0 :     cm->reset_frame_context =
    1830           0 :         cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
    1831             : 
    1832           0 :     if (cm->intra_only) {
    1833           0 :       if (!vp9_read_sync_code(rb))
    1834           0 :         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
    1835             :                            "Invalid frame sync code");
    1836           0 :       if (cm->profile > PROFILE_0) {
    1837           0 :         read_bitdepth_colorspace_sampling(cm, rb);
    1838             :       } else {
    1839             :         // NOTE: The intra-only frame header does not include the specification
    1840             :         // of either the color format or color sub-sampling in profile 0. VP9
    1841             :         // specifies that the default color format should be YUV 4:2:0 in this
    1842             :         // case (normative).
    1843           0 :         cm->color_space = VPX_CS_BT_601;
    1844           0 :         cm->color_range = VPX_CR_STUDIO_RANGE;
    1845           0 :         cm->subsampling_y = cm->subsampling_x = 1;
    1846           0 :         cm->bit_depth = VPX_BITS_8;
    1847             : #if CONFIG_VP9_HIGHBITDEPTH
    1848             :         cm->use_highbitdepth = 0;
    1849             : #endif
    1850             :       }
    1851             : 
    1852           0 :       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
    1853           0 :       setup_frame_size(cm, rb);
    1854           0 :       if (pbi->need_resync) {
    1855           0 :         memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
    1856           0 :         pbi->need_resync = 0;
    1857             :       }
    1858           0 :     } else if (pbi->need_resync != 1) { /* Skip if need resync */
    1859           0 :       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
    1860           0 :       for (i = 0; i < REFS_PER_FRAME; ++i) {
    1861           0 :         const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
    1862           0 :         const int idx = cm->ref_frame_map[ref];
    1863           0 :         RefBuffer *const ref_frame = &cm->frame_refs[i];
    1864           0 :         ref_frame->idx = idx;
    1865           0 :         ref_frame->buf = &frame_bufs[idx].buf;
    1866           0 :         cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
    1867             :       }
    1868             : 
    1869           0 :       setup_frame_size_with_refs(cm, rb);
    1870             : 
    1871           0 :       cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
    1872           0 :       cm->interp_filter = read_interp_filter(rb);
    1873             : 
    1874           0 :       for (i = 0; i < REFS_PER_FRAME; ++i) {
    1875           0 :         RefBuffer *const ref_buf = &cm->frame_refs[i];
    1876             : #if CONFIG_VP9_HIGHBITDEPTH
    1877             :         vp9_setup_scale_factors_for_frame(
    1878             :             &ref_buf->sf, ref_buf->buf->y_crop_width,
    1879             :             ref_buf->buf->y_crop_height, cm->width, cm->height,
    1880             :             cm->use_highbitdepth);
    1881             : #else
    1882           0 :         vp9_setup_scale_factors_for_frame(
    1883           0 :             &ref_buf->sf, ref_buf->buf->y_crop_width,
    1884           0 :             ref_buf->buf->y_crop_height, cm->width, cm->height);
    1885             : #endif
    1886             :       }
    1887             :     }
    1888             :   }
    1889             : #if CONFIG_VP9_HIGHBITDEPTH
    1890             :   get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
    1891             : #endif
    1892           0 :   get_frame_new_buffer(cm)->color_space = cm->color_space;
    1893           0 :   get_frame_new_buffer(cm)->color_range = cm->color_range;
    1894           0 :   get_frame_new_buffer(cm)->render_width = cm->render_width;
    1895           0 :   get_frame_new_buffer(cm)->render_height = cm->render_height;
    1896             : 
    1897           0 :   if (pbi->need_resync) {
    1898           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1899             :                        "Keyframe / intra-only frame required to reset decoder"
    1900             :                        " state");
    1901             :   }
    1902             : 
    1903           0 :   if (!cm->error_resilient_mode) {
    1904           0 :     cm->refresh_frame_context = vpx_rb_read_bit(rb);
    1905           0 :     cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
    1906           0 :     if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
    1907             :   } else {
    1908           0 :     cm->refresh_frame_context = 0;
    1909           0 :     cm->frame_parallel_decoding_mode = 1;
    1910             :   }
    1911             : 
    1912             :   // This flag will be overridden by the call to vp9_setup_past_independence
    1913             :   // below, forcing the use of context 0 for those frame types.
    1914           0 :   cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
    1915             : 
    1916             :   // Generate next_ref_frame_map.
    1917           0 :   lock_buffer_pool(pool);
    1918           0 :   for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
    1919           0 :     if (mask & 1) {
    1920           0 :       cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
    1921           0 :       ++frame_bufs[cm->new_fb_idx].ref_count;
    1922             :     } else {
    1923           0 :       cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
    1924             :     }
    1925             :     // Current thread holds the reference frame.
    1926           0 :     if (cm->ref_frame_map[ref_index] >= 0)
    1927           0 :       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
    1928           0 :     ++ref_index;
    1929             :   }
    1930             : 
    1931           0 :   for (; ref_index < REF_FRAMES; ++ref_index) {
    1932           0 :     cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
    1933             :     // Current thread holds the reference frame.
    1934           0 :     if (cm->ref_frame_map[ref_index] >= 0)
    1935           0 :       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
    1936             :   }
    1937           0 :   unlock_buffer_pool(pool);
    1938           0 :   pbi->hold_ref_buf = 1;
    1939             : 
    1940           0 :   if (frame_is_intra_only(cm) || cm->error_resilient_mode)
    1941           0 :     vp9_setup_past_independence(cm);
    1942             : 
    1943           0 :   setup_loopfilter(&cm->lf, rb);
    1944           0 :   setup_quantization(cm, &pbi->mb, rb);
    1945           0 :   setup_segmentation(&cm->seg, rb);
    1946           0 :   setup_segmentation_dequant(cm);
    1947             : 
    1948           0 :   setup_tile_info(cm, rb);
    1949           0 :   sz = vpx_rb_read_literal(rb, 16);
    1950             : 
    1951           0 :   if (sz == 0)
    1952           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    1953             :                        "Invalid header size");
    1954             : 
    1955           0 :   return sz;
    1956             : }
    1957             : 
    1958           0 : static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
    1959             :                                   size_t partition_size) {
    1960           0 :   VP9_COMMON *const cm = &pbi->common;
    1961           0 :   MACROBLOCKD *const xd = &pbi->mb;
    1962           0 :   FRAME_CONTEXT *const fc = cm->fc;
    1963             :   vpx_reader r;
    1964             :   int k;
    1965             : 
    1966           0 :   if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
    1967             :                       pbi->decrypt_state))
    1968           0 :     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
    1969             :                        "Failed to allocate bool decoder 0");
    1970             : 
    1971           0 :   cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
    1972           0 :   if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
    1973           0 :   read_coef_probs(fc, cm->tx_mode, &r);
    1974             : 
    1975           0 :   for (k = 0; k < SKIP_CONTEXTS; ++k)
    1976           0 :     vp9_diff_update_prob(&r, &fc->skip_probs[k]);
    1977             : 
    1978           0 :   if (!frame_is_intra_only(cm)) {
    1979           0 :     nmv_context *const nmvc = &fc->nmvc;
    1980             :     int i, j;
    1981             : 
    1982           0 :     read_inter_mode_probs(fc, &r);
    1983             : 
    1984           0 :     if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
    1985             : 
    1986           0 :     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
    1987           0 :       vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
    1988             : 
    1989           0 :     cm->reference_mode = read_frame_reference_mode(cm, &r);
    1990           0 :     if (cm->reference_mode != SINGLE_REFERENCE)
    1991           0 :       setup_compound_reference_mode(cm);
    1992           0 :     read_frame_reference_mode_probs(cm, &r);
    1993             : 
    1994           0 :     for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
    1995           0 :       for (i = 0; i < INTRA_MODES - 1; ++i)
    1996           0 :         vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
    1997             : 
    1998           0 :     for (j = 0; j < PARTITION_CONTEXTS; ++j)
    1999           0 :       for (i = 0; i < PARTITION_TYPES - 1; ++i)
    2000           0 :         vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
    2001             : 
    2002           0 :     read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
    2003             :   }
    2004             : 
    2005           0 :   return vpx_reader_has_error(&r);
    2006             : }
    2007             : 
    2008           0 : static struct vpx_read_bit_buffer *init_read_bit_buffer(
    2009             :     VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
    2010             :     const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
    2011           0 :   rb->bit_offset = 0;
    2012           0 :   rb->error_handler = error_handler;
    2013           0 :   rb->error_handler_data = &pbi->common;
    2014           0 :   if (pbi->decrypt_cb) {
    2015           0 :     const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
    2016           0 :     pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
    2017           0 :     rb->bit_buffer = clear_data;
    2018           0 :     rb->bit_buffer_end = clear_data + n;
    2019             :   } else {
    2020           0 :     rb->bit_buffer = data;
    2021           0 :     rb->bit_buffer_end = data_end;
    2022             :   }
    2023           0 :   return rb;
    2024             : }
    2025             : 
    2026             : //------------------------------------------------------------------------------
    2027             : 
    2028           0 : int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
    2029           0 :   return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
    2030           0 :          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
    2031           0 :          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
    2032             : }
    2033             : 
    2034           0 : void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
    2035             :                          int *height) {
    2036           0 :   *width = vpx_rb_read_literal(rb, 16) + 1;
    2037           0 :   *height = vpx_rb_read_literal(rb, 16) + 1;
    2038           0 : }
    2039             : 
    2040           0 : BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
    2041           0 :   int profile = vpx_rb_read_bit(rb);
    2042           0 :   profile |= vpx_rb_read_bit(rb) << 1;
    2043           0 :   if (profile > 2) profile += vpx_rb_read_bit(rb);
    2044           0 :   return (BITSTREAM_PROFILE)profile;
    2045             : }
    2046             : 
    2047           0 : void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
    2048             :                       const uint8_t *data_end, const uint8_t **p_data_end) {
    2049           0 :   VP9_COMMON *const cm = &pbi->common;
    2050           0 :   MACROBLOCKD *const xd = &pbi->mb;
    2051             :   struct vpx_read_bit_buffer rb;
    2052           0 :   int context_updated = 0;
    2053             :   uint8_t clear_data[MAX_VP9_HEADER_SIZE];
    2054           0 :   const size_t first_partition_size = read_uncompressed_header(
    2055             :       pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
    2056           0 :   const int tile_rows = 1 << cm->log2_tile_rows;
    2057           0 :   const int tile_cols = 1 << cm->log2_tile_cols;
    2058           0 :   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
    2059           0 :   xd->cur_buf = new_fb;
    2060             : 
    2061           0 :   if (!first_partition_size) {
    2062             :     // showing a frame directly
    2063           0 :     *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
    2064           0 :     return;
    2065             :   }
    2066             : 
    2067           0 :   data += vpx_rb_bytes_read(&rb);
    2068           0 :   if (!read_is_valid(data, first_partition_size, data_end))
    2069           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    2070             :                        "Truncated packet or corrupt header length");
    2071             : 
    2072           0 :   cm->use_prev_frame_mvs =
    2073           0 :       !cm->error_resilient_mode && cm->width == cm->last_width &&
    2074           0 :       cm->height == cm->last_height && !cm->last_intra_only &&
    2075           0 :       cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
    2076             : 
    2077           0 :   vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
    2078             : 
    2079           0 :   *cm->fc = cm->frame_contexts[cm->frame_context_idx];
    2080           0 :   if (!cm->fc->initialized)
    2081           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    2082             :                        "Uninitialized entropy context.");
    2083             : 
    2084           0 :   xd->corrupted = 0;
    2085           0 :   new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
    2086           0 :   if (new_fb->corrupted)
    2087           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    2088             :                        "Decode failed. Frame data header is corrupted.");
    2089             : 
    2090           0 :   if (cm->lf.filter_level && !cm->skip_loop_filter) {
    2091           0 :     vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
    2092             :   }
    2093             : 
    2094             :   // If encoded in frame parallel mode, frame context is ready after decoding
    2095             :   // the frame header.
    2096           0 :   if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) {
    2097           0 :     VPxWorker *const worker = pbi->frame_worker_owner;
    2098           0 :     FrameWorkerData *const frame_worker_data = worker->data1;
    2099           0 :     if (cm->refresh_frame_context) {
    2100           0 :       context_updated = 1;
    2101           0 :       cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
    2102             :     }
    2103           0 :     vp9_frameworker_lock_stats(worker);
    2104           0 :     pbi->cur_buf->row = -1;
    2105           0 :     pbi->cur_buf->col = -1;
    2106           0 :     frame_worker_data->frame_context_ready = 1;
    2107             :     // Signal the main thread that context is ready.
    2108           0 :     vp9_frameworker_signal_stats(worker);
    2109           0 :     vp9_frameworker_unlock_stats(worker);
    2110             :   }
    2111             : 
    2112           0 :   if (pbi->tile_worker_data == NULL ||
    2113           0 :       (tile_cols * tile_rows) != pbi->total_tiles) {
    2114           0 :     const int num_tile_workers =
    2115           0 :         tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
    2116           0 :     const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
    2117             :     // Ensure tile data offsets will be properly aligned. This may fail on
    2118             :     // platforms without DECLARE_ALIGNED().
    2119             :     assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
    2120           0 :     vpx_free(pbi->tile_worker_data);
    2121           0 :     CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size));
    2122           0 :     pbi->total_tiles = tile_rows * tile_cols;
    2123             :   }
    2124             : 
    2125           0 :   if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
    2126             :     // Multi-threaded tile decoder
    2127           0 :     *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
    2128           0 :     if (!xd->corrupted) {
    2129           0 :       if (!cm->skip_loop_filter) {
    2130             :         // If multiple threads are used to decode tiles, then we use those
    2131             :         // threads to do parallel loopfiltering.
    2132           0 :         vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
    2133             :                                  0, 0, pbi->tile_workers, pbi->num_tile_workers,
    2134             :                                  &pbi->lf_row_sync);
    2135             :       }
    2136             :     } else {
    2137           0 :       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    2138             :                          "Decode failed. Frame data is corrupted.");
    2139             :     }
    2140             :   } else {
    2141           0 :     *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
    2142             :   }
    2143             : 
    2144           0 :   if (!xd->corrupted) {
    2145           0 :     if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
    2146           0 :       vp9_adapt_coef_probs(cm);
    2147             : 
    2148           0 :       if (!frame_is_intra_only(cm)) {
    2149           0 :         vp9_adapt_mode_probs(cm);
    2150           0 :         vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
    2151             :       }
    2152             :     }
    2153             :   } else {
    2154           0 :     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
    2155             :                        "Decode failed. Frame data is corrupted.");
    2156             :   }
    2157             : 
    2158             :   // Non frame parallel update frame context here.
    2159           0 :   if (cm->refresh_frame_context && !context_updated)
    2160           0 :     cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
    2161             : }

Generated by: LCOV version 1.13