LCOV - code coverage report
Current view: top level - media/libvpx/libvpx/vp9/encoder/x86 - vp9_diamond_search_sad_avx.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 124 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 5 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #if defined(_MSC_VER)
      12             : #include <intrin.h>
      13             : #endif
      14             : #include <emmintrin.h>
      15             : #include <smmintrin.h>
      16             : 
      17             : #include "vpx_dsp/vpx_dsp_common.h"
      18             : #include "vp9/encoder/vp9_encoder.h"
      19             : #include "vpx_ports/mem.h"
      20             : 
      21             : #ifdef __GNUC__
      22             : #define LIKELY(v) __builtin_expect(v, 1)
      23             : #define UNLIKELY(v) __builtin_expect(v, 0)
      24             : #else
      25             : #define LIKELY(v) (v)
      26             : #define UNLIKELY(v) (v)
      27             : #endif
      28             : 
      29           0 : static INLINE int_mv pack_int_mv(int16_t row, int16_t col) {
      30             :   int_mv result;
      31           0 :   result.as_mv.row = row;
      32           0 :   result.as_mv.col = col;
      33           0 :   return result;
      34             : }
      35             : 
      36           0 : static INLINE MV_JOINT_TYPE get_mv_joint(const int_mv mv) {
      37             :   // This is simplified from the C implementation to utilise that
      38             :   //  x->nmvjointsadcost[1] == x->nmvjointsadcost[2]  and
      39             :   //  x->nmvjointsadcost[1] == x->nmvjointsadcost[3]
      40           0 :   return mv.as_int == 0 ? 0 : 1;
      41             : }
      42             : 
      43           0 : static INLINE int mv_cost(const int_mv mv, const int *joint_cost,
      44             :                           int *const comp_cost[2]) {
      45           0 :   return joint_cost[get_mv_joint(mv)] + comp_cost[0][mv.as_mv.row] +
      46           0 :          comp_cost[1][mv.as_mv.col];
      47             : }
      48             : 
      49           0 : static int mvsad_err_cost(const MACROBLOCK *x, const int_mv mv, const MV *ref,
      50             :                           int sad_per_bit) {
      51           0 :   const int_mv diff =
      52           0 :       pack_int_mv(mv.as_mv.row - ref->row, mv.as_mv.col - ref->col);
      53           0 :   return ROUND_POWER_OF_TWO(
      54             :       (unsigned)mv_cost(diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit,
      55             :       VP9_PROB_COST_SHIFT);
      56             : }
      57             : 
      58             : /*****************************************************************************
      59             :  * This function utilizes 3 properties of the cost function lookup tables,   *
      60             :  * constructed in using 'cal_nmvjointsadcost' and 'cal_nmvsadcosts' in       *
      61             :  * vp9_encoder.c.                                                            *
      62             :  * For the joint cost:                                                       *
      63             :  *   - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3]           *
      64             :  * For the component costs:                                                  *
      65             :  *   - For all i: mvsadcost[0][i] == mvsadcost[1][i]                         *
      66             :  *         (Equal costs for both components)                                 *
      67             :  *   - For all i: mvsadcost[0][i] == mvsadcost[0][-i]                        *
      68             :  *         (Cost function is even)                                           *
      69             :  * If these do not hold, then this function cannot be used without           *
      70             :  * modification, in which case you can revert to using the C implementation, *
      71             :  * which does not rely on these properties.                                  *
      72             :  *****************************************************************************/
      73           0 : int vp9_diamond_search_sad_avx(const MACROBLOCK *x,
      74             :                                const search_site_config *cfg, MV *ref_mv,
      75             :                                MV *best_mv, int search_param, int sad_per_bit,
      76             :                                int *num00, const vp9_variance_fn_ptr_t *fn_ptr,
      77             :                                const MV *center_mv) {
      78           0 :   const int_mv maxmv = pack_int_mv(x->mv_limits.row_max, x->mv_limits.col_max);
      79           0 :   const __m128i v_max_mv_w = _mm_set1_epi32(maxmv.as_int);
      80           0 :   const int_mv minmv = pack_int_mv(x->mv_limits.row_min, x->mv_limits.col_min);
      81           0 :   const __m128i v_min_mv_w = _mm_set1_epi32(minmv.as_int);
      82             : 
      83           0 :   const __m128i v_spb_d = _mm_set1_epi32(sad_per_bit);
      84             : 
      85           0 :   const __m128i v_joint_cost_0_d = _mm_set1_epi32(x->nmvjointsadcost[0]);
      86           0 :   const __m128i v_joint_cost_1_d = _mm_set1_epi32(x->nmvjointsadcost[1]);
      87             : 
      88             :   // search_param determines the length of the initial step and hence the number
      89             :   // of iterations.
      90             :   // 0 = initial step (MAX_FIRST_STEP) pel
      91             :   // 1 = (MAX_FIRST_STEP/2) pel,
      92             :   // 2 = (MAX_FIRST_STEP/4) pel...
      93           0 :   const MV *ss_mv = &cfg->ss_mv[cfg->searches_per_step * search_param];
      94           0 :   const intptr_t *ss_os = &cfg->ss_os[cfg->searches_per_step * search_param];
      95           0 :   const int tot_steps = cfg->total_steps - search_param;
      96             : 
      97           0 :   const int_mv fcenter_mv =
      98           0 :       pack_int_mv(center_mv->row >> 3, center_mv->col >> 3);
      99           0 :   const __m128i vfcmv = _mm_set1_epi32(fcenter_mv.as_int);
     100             : 
     101           0 :   const int ref_row = clamp(ref_mv->row, minmv.as_mv.row, maxmv.as_mv.row);
     102           0 :   const int ref_col = clamp(ref_mv->col, minmv.as_mv.col, maxmv.as_mv.col);
     103             : 
     104           0 :   int_mv bmv = pack_int_mv(ref_row, ref_col);
     105           0 :   int_mv new_bmv = bmv;
     106           0 :   __m128i v_bmv_w = _mm_set1_epi32(bmv.as_int);
     107             : 
     108           0 :   const int what_stride = x->plane[0].src.stride;
     109           0 :   const int in_what_stride = x->e_mbd.plane[0].pre[0].stride;
     110           0 :   const uint8_t *const what = x->plane[0].src.buf;
     111           0 :   const uint8_t *const in_what =
     112           0 :       x->e_mbd.plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
     113             : 
     114             :   // Work out the start point for the search
     115           0 :   const uint8_t *best_address = in_what;
     116           0 :   const uint8_t *new_best_address = best_address;
     117             : #if ARCH_X86_64
     118           0 :   __m128i v_ba_q = _mm_set1_epi64x((intptr_t)best_address);
     119             : #else
     120             :   __m128i v_ba_d = _mm_set1_epi32((intptr_t)best_address);
     121             : #endif
     122             : 
     123             :   unsigned int best_sad;
     124             :   int i, j, step;
     125             : 
     126             :   // Check the prerequisite cost function properties that are easy to check
     127             :   // in an assert. See the function-level documentation for details on all
     128             :   // prerequisites.
     129           0 :   assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[2]);
     130           0 :   assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[3]);
     131             : 
     132             :   // Check the starting position
     133           0 :   best_sad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride);
     134           0 :   best_sad += mvsad_err_cost(x, bmv, &fcenter_mv.as_mv, sad_per_bit);
     135             : 
     136           0 :   *num00 = 0;
     137             : 
     138           0 :   for (i = 0, step = 0; step < tot_steps; step++) {
     139           0 :     for (j = 0; j < cfg->searches_per_step; j += 4, i += 4) {
     140             :       __m128i v_sad_d, v_cost_d, v_outside_d, v_inside_d, v_diff_mv_w;
     141             : #if ARCH_X86_64
     142             :       __m128i v_blocka[2];
     143             : #else
     144             :       __m128i v_blocka[1];
     145             : #endif
     146             : 
     147             :       // Compute the candidate motion vectors
     148           0 :       const __m128i v_ss_mv_w = _mm_loadu_si128((const __m128i *)&ss_mv[i]);
     149           0 :       const __m128i v_these_mv_w = _mm_add_epi16(v_bmv_w, v_ss_mv_w);
     150             :       // Clamp them to the search bounds
     151           0 :       __m128i v_these_mv_clamp_w = v_these_mv_w;
     152           0 :       v_these_mv_clamp_w = _mm_min_epi16(v_these_mv_clamp_w, v_max_mv_w);
     153           0 :       v_these_mv_clamp_w = _mm_max_epi16(v_these_mv_clamp_w, v_min_mv_w);
     154             :       // The ones that did not change are inside the search area
     155           0 :       v_inside_d = _mm_cmpeq_epi32(v_these_mv_clamp_w, v_these_mv_w);
     156             : 
     157             :       // If none of them are inside, then move on
     158           0 :       if (LIKELY(_mm_test_all_zeros(v_inside_d, v_inside_d))) {
     159           0 :         continue;
     160             :       }
     161             : 
     162             :       // The inverse mask indicates which of the MVs are outside
     163           0 :       v_outside_d = _mm_xor_si128(v_inside_d, _mm_set1_epi8(0xff));
     164             :       // Shift right to keep the sign bit clear, we will use this later
     165             :       // to set the cost to the maximum value.
     166           0 :       v_outside_d = _mm_srli_epi32(v_outside_d, 1);
     167             : 
     168             :       // Compute the difference MV
     169           0 :       v_diff_mv_w = _mm_sub_epi16(v_these_mv_clamp_w, vfcmv);
     170             :       // We utilise the fact that the cost function is even, and use the
     171             :       // absolute difference. This allows us to use unsigned indexes later
     172             :       // and reduces cache pressure somewhat as only a half of the table
     173             :       // is ever referenced.
     174           0 :       v_diff_mv_w = _mm_abs_epi16(v_diff_mv_w);
     175             : 
     176             :       // Compute the SIMD pointer offsets.
     177             :       {
     178             : #if ARCH_X86_64  //  sizeof(intptr_t) == 8
     179             :         // Load the offsets
     180           0 :         __m128i v_bo10_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 0]);
     181           0 :         __m128i v_bo32_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 2]);
     182             :         // Set the ones falling outside to zero
     183           0 :         v_bo10_q = _mm_and_si128(v_bo10_q, _mm_cvtepi32_epi64(v_inside_d));
     184           0 :         v_bo32_q =
     185           0 :             _mm_and_si128(v_bo32_q, _mm_unpackhi_epi32(v_inside_d, v_inside_d));
     186             :         // Compute the candidate addresses
     187           0 :         v_blocka[0] = _mm_add_epi64(v_ba_q, v_bo10_q);
     188           0 :         v_blocka[1] = _mm_add_epi64(v_ba_q, v_bo32_q);
     189             : #else  // ARCH_X86 //  sizeof(intptr_t) == 4
     190             :         __m128i v_bo_d = _mm_loadu_si128((const __m128i *)&ss_os[i]);
     191             :         v_bo_d = _mm_and_si128(v_bo_d, v_inside_d);
     192             :         v_blocka[0] = _mm_add_epi32(v_ba_d, v_bo_d);
     193             : #endif
     194             :       }
     195             : 
     196           0 :       fn_ptr->sdx4df(what, what_stride, (const uint8_t **)&v_blocka[0],
     197             :                      in_what_stride, (uint32_t *)&v_sad_d);
     198             : 
     199             :       // Look up the component cost of the residual motion vector
     200             :       {
     201           0 :         const int32_t row0 = _mm_extract_epi16(v_diff_mv_w, 0);
     202           0 :         const int32_t col0 = _mm_extract_epi16(v_diff_mv_w, 1);
     203           0 :         const int32_t row1 = _mm_extract_epi16(v_diff_mv_w, 2);
     204           0 :         const int32_t col1 = _mm_extract_epi16(v_diff_mv_w, 3);
     205           0 :         const int32_t row2 = _mm_extract_epi16(v_diff_mv_w, 4);
     206           0 :         const int32_t col2 = _mm_extract_epi16(v_diff_mv_w, 5);
     207           0 :         const int32_t row3 = _mm_extract_epi16(v_diff_mv_w, 6);
     208           0 :         const int32_t col3 = _mm_extract_epi16(v_diff_mv_w, 7);
     209             : 
     210             :         // Note: This is a use case for vpgather in AVX2
     211           0 :         const uint32_t cost0 = x->nmvsadcost[0][row0] + x->nmvsadcost[0][col0];
     212           0 :         const uint32_t cost1 = x->nmvsadcost[0][row1] + x->nmvsadcost[0][col1];
     213           0 :         const uint32_t cost2 = x->nmvsadcost[0][row2] + x->nmvsadcost[0][col2];
     214           0 :         const uint32_t cost3 = x->nmvsadcost[0][row3] + x->nmvsadcost[0][col3];
     215             : 
     216             :         __m128i v_cost_10_d, v_cost_32_d;
     217           0 :         v_cost_10_d = _mm_cvtsi32_si128(cost0);
     218           0 :         v_cost_10_d = _mm_insert_epi32(v_cost_10_d, cost1, 1);
     219           0 :         v_cost_32_d = _mm_cvtsi32_si128(cost2);
     220           0 :         v_cost_32_d = _mm_insert_epi32(v_cost_32_d, cost3, 1);
     221           0 :         v_cost_d = _mm_unpacklo_epi64(v_cost_10_d, v_cost_32_d);
     222             :       }
     223             : 
     224             :       // Now add in the joint cost
     225             :       {
     226           0 :         const __m128i v_sel_d =
     227           0 :             _mm_cmpeq_epi32(v_diff_mv_w, _mm_setzero_si128());
     228           0 :         const __m128i v_joint_cost_d =
     229             :             _mm_blendv_epi8(v_joint_cost_1_d, v_joint_cost_0_d, v_sel_d);
     230           0 :         v_cost_d = _mm_add_epi32(v_cost_d, v_joint_cost_d);
     231             :       }
     232             : 
     233             :       // Multiply by sad_per_bit
     234           0 :       v_cost_d = _mm_mullo_epi32(v_cost_d, v_spb_d);
     235             :       // ROUND_POWER_OF_TWO(v_cost_d, VP9_PROB_COST_SHIFT)
     236           0 :       v_cost_d = _mm_add_epi32(v_cost_d,
     237             :                                _mm_set1_epi32(1 << (VP9_PROB_COST_SHIFT - 1)));
     238           0 :       v_cost_d = _mm_srai_epi32(v_cost_d, VP9_PROB_COST_SHIFT);
     239             :       // Add the cost to the sad
     240           0 :       v_sad_d = _mm_add_epi32(v_sad_d, v_cost_d);
     241             : 
     242             :       // Make the motion vectors outside the search area have max cost
     243             :       // by or'ing in the comparison mask, this way the minimum search won't
     244             :       // pick them.
     245           0 :       v_sad_d = _mm_or_si128(v_sad_d, v_outside_d);
     246             : 
     247             :       // Find the minimum value and index horizontally in v_sad_d
     248             :       {
     249             :         // Try speculatively on 16 bits, so we can use the minpos intrinsic
     250           0 :         const __m128i v_sad_w = _mm_packus_epi32(v_sad_d, v_sad_d);
     251           0 :         const __m128i v_minp_w = _mm_minpos_epu16(v_sad_w);
     252             : 
     253           0 :         uint32_t local_best_sad = _mm_extract_epi16(v_minp_w, 0);
     254           0 :         uint32_t local_best_idx = _mm_extract_epi16(v_minp_w, 1);
     255             : 
     256             :         // If the local best value is not saturated, just use it, otherwise
     257             :         // find the horizontal minimum again the hard way on 32 bits.
     258             :         // This is executed rarely.
     259           0 :         if (UNLIKELY(local_best_sad == 0xffff)) {
     260             :           __m128i v_loval_d, v_hival_d, v_loidx_d, v_hiidx_d, v_sel_d;
     261             : 
     262           0 :           v_loval_d = v_sad_d;
     263           0 :           v_loidx_d = _mm_set_epi32(3, 2, 1, 0);
     264           0 :           v_hival_d = _mm_srli_si128(v_loval_d, 8);
     265           0 :           v_hiidx_d = _mm_srli_si128(v_loidx_d, 8);
     266             : 
     267           0 :           v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d);
     268             : 
     269           0 :           v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d);
     270           0 :           v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d);
     271           0 :           v_hival_d = _mm_srli_si128(v_loval_d, 4);
     272           0 :           v_hiidx_d = _mm_srli_si128(v_loidx_d, 4);
     273             : 
     274           0 :           v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d);
     275             : 
     276           0 :           v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d);
     277           0 :           v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d);
     278             : 
     279           0 :           local_best_sad = _mm_extract_epi32(v_loval_d, 0);
     280           0 :           local_best_idx = _mm_extract_epi32(v_loidx_d, 0);
     281             :         }
     282             : 
     283             :         // Update the global minimum if the local minimum is smaller
     284           0 :         if (LIKELY(local_best_sad < best_sad)) {
     285           0 :           new_bmv = ((const int_mv *)&v_these_mv_w)[local_best_idx];
     286           0 :           new_best_address = ((const uint8_t **)v_blocka)[local_best_idx];
     287             : 
     288           0 :           best_sad = local_best_sad;
     289             :         }
     290             :       }
     291             :     }
     292             : 
     293           0 :     bmv = new_bmv;
     294           0 :     best_address = new_best_address;
     295             : 
     296           0 :     v_bmv_w = _mm_set1_epi32(bmv.as_int);
     297             : #if ARCH_X86_64
     298           0 :     v_ba_q = _mm_set1_epi64x((intptr_t)best_address);
     299             : #else
     300             :     v_ba_d = _mm_set1_epi32((intptr_t)best_address);
     301             : #endif
     302             : 
     303           0 :     if (UNLIKELY(best_address == in_what)) {
     304           0 :       (*num00)++;
     305             :     }
     306             :   }
     307             : 
     308           0 :   *best_mv = bmv.as_mv;
     309           0 :   return best_sad;
     310             : }

Generated by: LCOV version 1.13