LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/base - bitbuffer.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 154 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 25 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include "webrtc/base/bitbuffer.h"
      12             : 
      13             : #include <algorithm>
      14             : #include <limits>
      15             : 
      16             : #include "webrtc/base/checks.h"
      17             : 
      18             : namespace {
      19             : 
      20             : // Returns the lowest (right-most) |bit_count| bits in |byte|.
      21           0 : uint8_t LowestBits(uint8_t byte, size_t bit_count) {
      22           0 :   RTC_DCHECK_LE(bit_count, 8);
      23           0 :   return byte & ((1 << bit_count) - 1);
      24             : }
      25             : 
      26             : // Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
      27             : // lowest bits (to the right).
      28           0 : uint8_t HighestBits(uint8_t byte, size_t bit_count) {
      29           0 :   RTC_DCHECK_LE(bit_count, 8);
      30           0 :   uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
      31           0 :   uint8_t mask = 0xFF << shift;
      32           0 :   return (byte & mask) >> shift;
      33             : }
      34             : 
      35             : // Returns the highest byte of |val| in a uint8_t.
      36           0 : uint8_t HighestByte(uint64_t val) {
      37           0 :   return static_cast<uint8_t>(val >> 56);
      38             : }
      39             : 
      40             : // Returns the result of writing partial data from |source|, of
      41             : // |source_bit_count| size in the highest bits, to |target| at
      42             : // |target_bit_offset| from the highest bit.
      43           0 : uint8_t WritePartialByte(uint8_t source,
      44             :                          size_t source_bit_count,
      45             :                          uint8_t target,
      46             :                          size_t target_bit_offset) {
      47           0 :   RTC_DCHECK(target_bit_offset < 8);
      48           0 :   RTC_DCHECK(source_bit_count < 9);
      49           0 :   RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
      50             :   // Generate a mask for just the bits we're going to overwrite, so:
      51             :   uint8_t mask =
      52             :       // The number of bits we want, in the most significant bits...
      53           0 :       static_cast<uint8_t>(0xFF << (8 - source_bit_count))
      54             :       // ...shifted over to the target offset from the most signficant bit.
      55           0 :       >> target_bit_offset;
      56             : 
      57             :   // We want the target, with the bits we'll overwrite masked off, or'ed with
      58             :   // the bits from the source we want.
      59           0 :   return (target & ~mask) | (source >> target_bit_offset);
      60             : }
      61             : 
      62             : // Counts the number of bits used in the binary representation of val.
      63           0 : size_t CountBits(uint64_t val) {
      64           0 :   size_t bit_count = 0;
      65           0 :   while (val != 0) {
      66           0 :     bit_count++;
      67           0 :     val >>= 1;
      68             :   }
      69           0 :   return bit_count;
      70             : }
      71             : 
      72             : }  // namespace
      73             : 
      74             : namespace rtc {
      75             : 
      76           0 : BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
      77           0 :     : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
      78           0 :   RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
      79           0 :              std::numeric_limits<uint32_t>::max());
      80           0 : }
      81             : 
      82           0 : uint64_t BitBuffer::RemainingBitCount() const {
      83           0 :   return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
      84             : }
      85             : 
      86           0 : bool BitBuffer::ReadUInt8(uint8_t* val) {
      87             :   uint32_t bit_val;
      88           0 :   if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) {
      89           0 :     return false;
      90             :   }
      91           0 :   RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
      92           0 :   *val = static_cast<uint8_t>(bit_val);
      93           0 :   return true;
      94             : }
      95             : 
      96           0 : bool BitBuffer::ReadUInt16(uint16_t* val) {
      97             :   uint32_t bit_val;
      98           0 :   if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) {
      99           0 :     return false;
     100             :   }
     101           0 :   RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
     102           0 :   *val = static_cast<uint16_t>(bit_val);
     103           0 :   return true;
     104             : }
     105             : 
     106           0 : bool BitBuffer::ReadUInt32(uint32_t* val) {
     107           0 :   return ReadBits(val, sizeof(uint32_t) * 8);
     108             : }
     109             : 
     110           0 : bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) {
     111           0 :   if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
     112           0 :     return false;
     113             :   }
     114           0 :   const uint8_t* bytes = bytes_ + byte_offset_;
     115           0 :   size_t remaining_bits_in_current_byte = 8 - bit_offset_;
     116           0 :   uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
     117             :   // If we're reading fewer bits than what's left in the current byte, just
     118             :   // return the portion of this byte that we need.
     119           0 :   if (bit_count < remaining_bits_in_current_byte) {
     120           0 :     *val = HighestBits(bits, bit_offset_ + bit_count);
     121           0 :     return true;
     122             :   }
     123             :   // Otherwise, subtract what we've read from the bit count and read as many
     124             :   // full bytes as we can into bits.
     125           0 :   bit_count -= remaining_bits_in_current_byte;
     126           0 :   while (bit_count >= 8) {
     127           0 :     bits = (bits << 8) | *bytes++;
     128           0 :     bit_count -= 8;
     129             :   }
     130             :   // Whatever we have left is smaller than a byte, so grab just the bits we need
     131             :   // and shift them into the lowest bits.
     132           0 :   if (bit_count > 0) {
     133           0 :     bits <<= bit_count;
     134           0 :     bits |= HighestBits(*bytes, bit_count);
     135             :   }
     136           0 :   *val = bits;
     137           0 :   return true;
     138             : }
     139             : 
     140           0 : bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) {
     141           0 :   return PeekBits(val, bit_count) && ConsumeBits(bit_count);
     142             : }
     143             : 
     144           0 : bool BitBuffer::ConsumeBytes(size_t byte_count) {
     145           0 :   return ConsumeBits(byte_count * 8);
     146             : }
     147             : 
     148           0 : bool BitBuffer::ConsumeBits(size_t bit_count) {
     149           0 :   if (bit_count > RemainingBitCount()) {
     150           0 :     return false;
     151             :   }
     152             : 
     153           0 :   byte_offset_ += (bit_offset_ + bit_count) / 8;
     154           0 :   bit_offset_ = (bit_offset_ + bit_count) % 8;
     155           0 :   return true;
     156             : }
     157             : 
     158           0 : bool BitBuffer::ReadExponentialGolomb(uint32_t* val) {
     159           0 :   if (!val) {
     160           0 :     return false;
     161             :   }
     162             :   // Store off the current byte/bit offset, in case we want to restore them due
     163             :   // to a failed parse.
     164           0 :   size_t original_byte_offset = byte_offset_;
     165           0 :   size_t original_bit_offset = bit_offset_;
     166             : 
     167             :   // Count the number of leading 0 bits by peeking/consuming them one at a time.
     168           0 :   size_t zero_bit_count = 0;
     169             :   uint32_t peeked_bit;
     170           0 :   while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
     171           0 :     zero_bit_count++;
     172           0 :     ConsumeBits(1);
     173             :   }
     174             : 
     175             :   // We should either be at the end of the stream, or the next bit should be 1.
     176           0 :   RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);
     177             : 
     178             :   // The bit count of the value is the number of zeros + 1. Make sure that many
     179             :   // bits fits in a uint32_t and that we have enough bits left for it, and then
     180             :   // read the value.
     181           0 :   size_t value_bit_count = zero_bit_count + 1;
     182           0 :   if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
     183           0 :     RTC_CHECK(Seek(original_byte_offset, original_bit_offset));
     184           0 :     return false;
     185             :   }
     186           0 :   *val -= 1;
     187           0 :   return true;
     188             : }
     189             : 
     190           0 : bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) {
     191             :   uint32_t unsigned_val;
     192           0 :   if (!ReadExponentialGolomb(&unsigned_val)) {
     193           0 :     return false;
     194             :   }
     195           0 :   if ((unsigned_val & 1) == 0) {
     196           0 :     *val = -static_cast<int32_t>(unsigned_val / 2);
     197             :   } else {
     198           0 :     *val = (unsigned_val + 1) / 2;
     199             :   }
     200           0 :   return true;
     201             : }
     202             : 
     203           0 : void BitBuffer::GetCurrentOffset(
     204             :     size_t* out_byte_offset, size_t* out_bit_offset) {
     205           0 :   RTC_CHECK(out_byte_offset != NULL);
     206           0 :   RTC_CHECK(out_bit_offset != NULL);
     207           0 :   *out_byte_offset = byte_offset_;
     208           0 :   *out_bit_offset = bit_offset_;
     209           0 : }
     210             : 
     211           0 : bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
     212           0 :   if (byte_offset > byte_count_ || bit_offset > 7 ||
     213           0 :       (byte_offset == byte_count_ && bit_offset > 0)) {
     214           0 :     return false;
     215             :   }
     216           0 :   byte_offset_ = byte_offset;
     217           0 :   bit_offset_ = bit_offset;
     218           0 :   return true;
     219             : }
     220             : 
     221           0 : BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
     222           0 :     : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {
     223           0 : }
     224             : 
     225           0 : bool BitBufferWriter::WriteUInt8(uint8_t val) {
     226           0 :   return WriteBits(val, sizeof(uint8_t) * 8);
     227             : }
     228             : 
     229           0 : bool BitBufferWriter::WriteUInt16(uint16_t val) {
     230           0 :   return WriteBits(val, sizeof(uint16_t) * 8);
     231             : }
     232             : 
     233           0 : bool BitBufferWriter::WriteUInt32(uint32_t val) {
     234           0 :   return WriteBits(val, sizeof(uint32_t) * 8);
     235             : }
     236             : 
     237           0 : bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
     238           0 :   if (bit_count > RemainingBitCount()) {
     239           0 :     return false;
     240             :   }
     241           0 :   size_t total_bits = bit_count;
     242             : 
     243             :   // For simplicity, push the bits we want to read from val to the highest bits.
     244           0 :   val <<= (sizeof(uint64_t) * 8 - bit_count);
     245             : 
     246           0 :   uint8_t* bytes = writable_bytes_ + byte_offset_;
     247             : 
     248             :   // The first byte is relatively special; the bit offset to write to may put us
     249             :   // in the middle of the byte, and the total bit count to write may require we
     250             :   // save the bits at the end of the byte.
     251           0 :   size_t remaining_bits_in_current_byte = 8 - bit_offset_;
     252             :   size_t bits_in_first_byte =
     253           0 :       std::min(bit_count, remaining_bits_in_current_byte);
     254           0 :   *bytes = WritePartialByte(
     255           0 :       HighestByte(val), bits_in_first_byte, *bytes, bit_offset_);
     256           0 :   if (bit_count <= remaining_bits_in_current_byte) {
     257             :     // Nothing left to write, so quit early.
     258           0 :     return ConsumeBits(total_bits);
     259             :   }
     260             : 
     261             :   // Subtract what we've written from the bit count, shift it off the value, and
     262             :   // write the remaining full bytes.
     263           0 :   val <<= bits_in_first_byte;
     264           0 :   bytes++;
     265           0 :   bit_count -= bits_in_first_byte;
     266           0 :   while (bit_count >= 8) {
     267           0 :     *bytes++ = HighestByte(val);
     268           0 :     val <<= 8;
     269           0 :     bit_count -= 8;
     270             :   }
     271             : 
     272             :   // Last byte may also be partial, so write the remaining bits from the top of
     273             :   // val.
     274           0 :   if (bit_count > 0) {
     275           0 :     *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
     276             :   }
     277             : 
     278             :   // All done! Consume the bits we've written.
     279           0 :   return ConsumeBits(total_bits);
     280             : }
     281             : 
     282           0 : bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
     283             :   // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
     284             :   // when encoded, so don't support writing it either.
     285           0 :   if (val == std::numeric_limits<uint32_t>::max()) {
     286           0 :     return false;
     287             :   }
     288           0 :   uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;
     289             : 
     290             :   // We need to write CountBits(val+1) 0s and then val+1. Since val (as a
     291             :   // uint64_t) has leading zeros, we can just write the total golomb encoded
     292             :   // size worth of bits, knowing the value will appear last.
     293           0 :   return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
     294             : }
     295             : 
     296           0 : bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) {
     297           0 :   if (val == 0) {
     298           0 :     return WriteExponentialGolomb(0);
     299           0 :   } else if (val > 0) {
     300           0 :     uint32_t signed_val = val;
     301           0 :     return WriteExponentialGolomb((signed_val * 2) - 1);
     302             :   } else {
     303           0 :     if (val == std::numeric_limits<int32_t>::min())
     304           0 :       return false;  // Not supported, would cause overflow.
     305           0 :     uint32_t signed_val = -val;
     306           0 :     return WriteExponentialGolomb(signed_val * 2);
     307             :   }
     308             : }
     309             : 
     310             : }  // namespace rtc

Generated by: LCOV version 1.13