LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/base - rollingaccumulator.h (source / functions) Hit Total Coverage
Test: output.info Lines: 0 43 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 6 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright 2011 The WebRTC Project Authors. All rights reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_
      12             : #define WEBRTC_BASE_ROLLINGACCUMULATOR_H_
      13             : 
      14             : #include <algorithm>
      15             : #include <vector>
      16             : 
      17             : #include "webrtc/base/checks.h"
      18             : #include "webrtc/base/common.h"
      19             : #include "webrtc/base/constructormagic.h"
      20             : 
      21             : namespace rtc {
      22             : 
      23             : // RollingAccumulator stores and reports statistics
      24             : // over N most recent samples.
      25             : //
      26             : // T is assumed to be an int, long, double or float.
      27             : template<typename T>
      28             : class RollingAccumulator {
      29             :  public:
      30           0 :   explicit RollingAccumulator(size_t max_count)
      31           0 :     : samples_(max_count) {
      32           0 :     Reset();
      33           0 :   }
      34           0 :   ~RollingAccumulator() {
      35           0 :   }
      36             : 
      37           0 :   size_t max_count() const {
      38           0 :     return samples_.size();
      39             :   }
      40             : 
      41             :   size_t count() const {
      42             :     return count_;
      43             :   }
      44             : 
      45           0 :   void Reset() {
      46           0 :     count_ = 0U;
      47           0 :     next_index_ = 0U;
      48           0 :     sum_ = 0.0;
      49           0 :     sum_2_ = 0.0;
      50           0 :     max_ = T();
      51           0 :     max_stale_ = false;
      52           0 :     min_ = T();
      53           0 :     min_stale_ = false;
      54           0 :   }
      55             : 
      56           0 :   void AddSample(T sample) {
      57           0 :     if (count_ == max_count()) {
      58             :       // Remove oldest sample.
      59           0 :       T sample_to_remove = samples_[next_index_];
      60           0 :       sum_ -= sample_to_remove;
      61           0 :       sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove;
      62           0 :       if (sample_to_remove >= max_) {
      63           0 :         max_stale_ = true;
      64             :       }
      65           0 :       if (sample_to_remove <= min_) {
      66           0 :         min_stale_ = true;
      67             :       }
      68             :     } else {
      69             :       // Increase count of samples.
      70           0 :       ++count_;
      71             :     }
      72             :     // Add new sample.
      73           0 :     samples_[next_index_] = sample;
      74           0 :     sum_ += sample;
      75           0 :     sum_2_ += static_cast<double>(sample) * sample;
      76           0 :     if (count_ == 1 || sample >= max_) {
      77           0 :       max_ = sample;
      78           0 :       max_stale_ = false;
      79             :     }
      80           0 :     if (count_ == 1 || sample <= min_) {
      81           0 :       min_ = sample;
      82           0 :       min_stale_ = false;
      83             :     }
      84             :     // Update next_index_.
      85           0 :     next_index_ = (next_index_ + 1) % max_count();
      86           0 :   }
      87             : 
      88             :   T ComputeSum() const {
      89             :     return static_cast<T>(sum_);
      90             :   }
      91             : 
      92           0 :   double ComputeMean() const {
      93           0 :     if (count_ == 0) {
      94           0 :       return 0.0;
      95             :     }
      96           0 :     return sum_ / count_;
      97             :   }
      98             : 
      99             :   T ComputeMax() const {
     100             :     if (max_stale_) {
     101             :       RTC_DCHECK(count_ > 0) <<
     102             :                  "It shouldn't be possible for max_stale_ && count_ == 0";
     103             :       max_ = samples_[next_index_];
     104             :       for (size_t i = 1u; i < count_; i++) {
     105             :         max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]);
     106             :       }
     107             :       max_stale_ = false;
     108             :     }
     109             :     return max_;
     110             :   }
     111             : 
     112             :   T ComputeMin() const {
     113             :     if (min_stale_) {
     114             :       RTC_DCHECK(count_ > 0) <<
     115             :                  "It shouldn't be possible for min_stale_ && count_ == 0";
     116             :       min_ = samples_[next_index_];
     117             :       for (size_t i = 1u; i < count_; i++) {
     118             :         min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]);
     119             :       }
     120             :       min_stale_ = false;
     121             :     }
     122             :     return min_;
     123             :   }
     124             : 
     125             :   // O(n) time complexity.
     126             :   // Weights nth sample with weight (learning_rate)^n. Learning_rate should be
     127             :   // between (0.0, 1.0], otherwise the non-weighted mean is returned.
     128             :   double ComputeWeightedMean(double learning_rate) const {
     129             :     if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
     130             :       return ComputeMean();
     131             :     }
     132             :     double weighted_mean = 0.0;
     133             :     double current_weight = 1.0;
     134             :     double weight_sum = 0.0;
     135             :     const size_t max_size = max_count();
     136             :     for (size_t i = 0; i < count_; ++i) {
     137             :       current_weight *= learning_rate;
     138             :       weight_sum += current_weight;
     139             :       // Add max_size to prevent underflow.
     140             :       size_t index = (next_index_ + max_size - i - 1) % max_size;
     141             :       weighted_mean += current_weight * samples_[index];
     142             :     }
     143             :     return weighted_mean / weight_sum;
     144             :   }
     145             : 
     146             :   // Compute estimated variance.  Estimation is more accurate
     147             :   // as the number of samples grows.
     148             :   double ComputeVariance() const {
     149             :     if (count_ == 0) {
     150             :       return 0.0;
     151             :     }
     152             :     // Var = E[x^2] - (E[x])^2
     153             :     double count_inv = 1.0 / count_;
     154             :     double mean_2 = sum_2_ * count_inv;
     155             :     double mean = sum_ * count_inv;
     156             :     return mean_2 - (mean * mean);
     157             :   }
     158             : 
     159             :  private:
     160             :   size_t count_;
     161             :   size_t next_index_;
     162             :   double sum_;    // Sum(x) - double to avoid overflow
     163             :   double sum_2_;  // Sum(x*x) - double to avoid overflow
     164             :   mutable T max_;
     165             :   mutable bool max_stale_;
     166             :   mutable T min_;
     167             :   mutable bool min_stale_;
     168             :   std::vector<T> samples_;
     169             : 
     170             :   RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator);
     171             : };
     172             : 
     173             : }  // namespace rtc
     174             : 
     175             : #endif  // WEBRTC_BASE_ROLLINGACCUMULATOR_H_

Generated by: LCOV version 1.13