LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/common_audio/signal_processing - levinson_durbin.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 85 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : 
      12             : /*
      13             :  * This file contains the function WebRtcSpl_LevinsonDurbin().
      14             :  * The description header can be found in signal_processing_library.h
      15             :  *
      16             :  */
      17             : 
      18             : #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
      19             : 
      20             : #define SPL_LEVINSON_MAXORDER 20
      21             : 
      22           0 : int16_t WebRtcSpl_LevinsonDurbin(const int32_t* R, int16_t* A, int16_t* K,
      23             :                                  size_t order)
      24             : {
      25             :     size_t i, j;
      26             :     // Auto-correlation coefficients in high precision
      27             :     int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
      28             :     // LPC coefficients in high precision
      29             :     int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
      30             :     // LPC coefficients for next iteration
      31             :     int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
      32             :     // Reflection coefficient in high precision
      33             :     int16_t K_hi, K_low;
      34             :     // Prediction gain Alpha in high precision and with scale factor
      35             :     int16_t Alpha_hi, Alpha_low, Alpha_exp;
      36             :     int16_t tmp_hi, tmp_low;
      37             :     int32_t temp1W32, temp2W32, temp3W32;
      38             :     int16_t norm;
      39             : 
      40             :     // Normalize the autocorrelation R[0]...R[order+1]
      41             : 
      42           0 :     norm = WebRtcSpl_NormW32(R[0]);
      43             : 
      44           0 :     for (i = 0; i <= order; ++i)
      45             :     {
      46           0 :         temp1W32 = R[i] * (1 << norm);
      47             :         // Put R in hi and low format
      48           0 :         R_hi[i] = (int16_t)(temp1W32 >> 16);
      49           0 :         R_low[i] = (int16_t)((temp1W32 - ((int32_t)R_hi[i] * 65536)) >> 1);
      50             :     }
      51             : 
      52             :     // K = A[1] = -R[1] / R[0]
      53             : 
      54           0 :     temp2W32 = R[1] * (1 << norm); // R[1] in Q31
      55           0 :     temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
      56           0 :     temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
      57             :     // Put back the sign on R[1]
      58           0 :     if (temp2W32 > 0)
      59             :     {
      60           0 :         temp1W32 = -temp1W32;
      61             :     }
      62             : 
      63             :     // Put K in hi and low format
      64           0 :     K_hi = (int16_t)(temp1W32 >> 16);
      65           0 :     K_low = (int16_t)((temp1W32 - ((int32_t)K_hi * 65536)) >> 1);
      66             : 
      67             :     // Store first reflection coefficient
      68           0 :     K[0] = K_hi;
      69             : 
      70           0 :     temp1W32 >>= 4;  // A[1] in Q27.
      71             : 
      72             :     // Put A[1] in hi and low format
      73           0 :     A_hi[1] = (int16_t)(temp1W32 >> 16);
      74           0 :     A_low[1] = (int16_t)((temp1W32 - ((int32_t)A_hi[1] * 65536)) >> 1);
      75             : 
      76             :     // Alpha = R[0] * (1-K^2)
      77             : 
      78           0 :     temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1;  // = k^2 in Q31
      79             : 
      80           0 :     temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
      81           0 :     temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
      82             : 
      83             :     // Store temp1W32 = 1 - K[0]*K[0] on hi and low format
      84           0 :     tmp_hi = (int16_t)(temp1W32 >> 16);
      85           0 :     tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1);
      86             : 
      87             :     // Calculate Alpha in Q31
      88           0 :     temp1W32 = (R_hi[0] * tmp_hi + (R_hi[0] * tmp_low >> 15) +
      89           0 :         (R_low[0] * tmp_hi >> 15)) << 1;
      90             : 
      91             :     // Normalize Alpha and put it in hi and low format
      92             : 
      93           0 :     Alpha_exp = WebRtcSpl_NormW32(temp1W32);
      94           0 :     temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
      95           0 :     Alpha_hi = (int16_t)(temp1W32 >> 16);
      96           0 :     Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1);
      97             : 
      98             :     // Perform the iterative calculations in the Levinson-Durbin algorithm
      99             : 
     100           0 :     for (i = 2; i <= order; i++)
     101             :     {
     102             :         /*                    ----
     103             :          temp1W32 =  R[i] + > R[j]*A[i-j]
     104             :          /
     105             :          ----
     106             :          j=1..i-1
     107             :          */
     108             : 
     109           0 :         temp1W32 = 0;
     110             : 
     111           0 :         for (j = 1; j < i; j++)
     112             :         {
     113             :           // temp1W32 is in Q31
     114           0 :           temp1W32 += (R_hi[j] * A_hi[i - j] * 2) +
     115           0 :               (((R_hi[j] * A_low[i - j] >> 15) +
     116           0 :               (R_low[j] * A_hi[i - j] >> 15)) * 2);
     117             :         }
     118             : 
     119           0 :         temp1W32 = temp1W32 * 16;
     120           0 :         temp1W32 += ((int32_t)R_hi[i] * 65536)
     121           0 :                 + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1);
     122             : 
     123             :         // K = -temp1W32 / Alpha
     124           0 :         temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
     125           0 :         temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
     126             : 
     127             :         // Put the sign of temp1W32 back again
     128           0 :         if (temp1W32 > 0)
     129             :         {
     130           0 :             temp3W32 = -temp3W32;
     131             :         }
     132             : 
     133             :         // Use the Alpha shifts from earlier to de-normalize
     134           0 :         norm = WebRtcSpl_NormW32(temp3W32);
     135           0 :         if ((Alpha_exp <= norm) || (temp3W32 == 0))
     136             :         {
     137           0 :             temp3W32 = temp3W32 * (1 << Alpha_exp);
     138             :         } else
     139             :         {
     140           0 :             if (temp3W32 > 0)
     141             :             {
     142           0 :                 temp3W32 = (int32_t)0x7fffffffL;
     143             :             } else
     144             :             {
     145           0 :                 temp3W32 = (int32_t)0x80000000L;
     146             :             }
     147             :         }
     148             : 
     149             :         // Put K on hi and low format
     150           0 :         K_hi = (int16_t)(temp3W32 >> 16);
     151           0 :         K_low = (int16_t)((temp3W32 - ((int32_t)K_hi * 65536)) >> 1);
     152             : 
     153             :         // Store Reflection coefficient in Q15
     154           0 :         K[i - 1] = K_hi;
     155             : 
     156             :         // Test for unstable filter.
     157             :         // If unstable return 0 and let the user decide what to do in that case
     158             : 
     159           0 :         if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750)
     160             :         {
     161           0 :             return 0; // Unstable filter
     162             :         }
     163             : 
     164             :         /*
     165             :          Compute updated LPC coefficient: Anew[i]
     166             :          Anew[j]= A[j] + K*A[i-j]   for j=1..i-1
     167             :          Anew[i]= K
     168             :          */
     169             : 
     170           0 :         for (j = 1; j < i; j++)
     171             :         {
     172             :             // temp1W32 = A[j] in Q27
     173           0 :             temp1W32 = (int32_t)A_hi[j] * 65536
     174           0 :                     + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1);
     175             : 
     176             :             // temp1W32 += K*A[i-j] in Q27
     177           0 :             temp1W32 += (K_hi * A_hi[i - j] + (K_hi * A_low[i - j] >> 15) +
     178           0 :                 (K_low * A_hi[i - j] >> 15)) * 2;
     179             : 
     180             :             // Put Anew in hi and low format
     181           0 :             A_upd_hi[j] = (int16_t)(temp1W32 >> 16);
     182           0 :             A_upd_low[j] = (int16_t)(
     183           0 :                 (temp1W32 - ((int32_t)A_upd_hi[j] * 65536)) >> 1);
     184             :         }
     185             : 
     186             :         // temp3W32 = K in Q27 (Convert from Q31 to Q27)
     187           0 :         temp3W32 >>= 4;
     188             : 
     189             :         // Store Anew in hi and low format
     190           0 :         A_upd_hi[i] = (int16_t)(temp3W32 >> 16);
     191           0 :         A_upd_low[i] = (int16_t)(
     192           0 :             (temp3W32 - ((int32_t)A_upd_hi[i] * 65536)) >> 1);
     193             : 
     194             :         // Alpha = Alpha * (1-K^2)
     195             : 
     196           0 :         temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) * 2;  // K*K in Q31
     197             : 
     198           0 :         temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
     199           0 :         temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K  in Q31
     200             : 
     201             :         // Convert 1- K^2 in hi and low format
     202           0 :         tmp_hi = (int16_t)(temp1W32 >> 16);
     203           0 :         tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1);
     204             : 
     205             :         // Calculate Alpha = Alpha * (1-K^2) in Q31
     206           0 :         temp1W32 = (Alpha_hi * tmp_hi + (Alpha_hi * tmp_low >> 15) +
     207           0 :             (Alpha_low * tmp_hi >> 15)) << 1;
     208             : 
     209             :         // Normalize Alpha and store it on hi and low format
     210             : 
     211           0 :         norm = WebRtcSpl_NormW32(temp1W32);
     212           0 :         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
     213             : 
     214           0 :         Alpha_hi = (int16_t)(temp1W32 >> 16);
     215           0 :         Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1);
     216             : 
     217             :         // Update the total normalization of Alpha
     218           0 :         Alpha_exp = Alpha_exp + norm;
     219             : 
     220             :         // Update A[]
     221             : 
     222           0 :         for (j = 1; j <= i; j++)
     223             :         {
     224           0 :             A_hi[j] = A_upd_hi[j];
     225           0 :             A_low[j] = A_upd_low[j];
     226             :         }
     227             :     }
     228             : 
     229             :     /*
     230             :      Set A[0] to 1.0 and store the A[i] i=1...order in Q12
     231             :      (Convert from Q27 and use rounding)
     232             :      */
     233             : 
     234           0 :     A[0] = 4096;
     235             : 
     236           0 :     for (i = 1; i <= order; i++)
     237             :     {
     238             :         // temp1W32 in Q27
     239           0 :         temp1W32 = (int32_t)A_hi[i] * 65536
     240           0 :                 + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1);
     241             :         // Round and store upper word
     242           0 :         A[i] = (int16_t)(((temp1W32 * 2) + 32768) >> 16);
     243             :     }
     244           0 :     return 1; // Stable filters
     245             : }

Generated by: LCOV version 1.13