LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/common_audio/signal_processing - splitting_filter.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 53 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 3 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : /*
      12             :  * This file contains the splitting filter functions.
      13             :  *
      14             :  */
      15             : 
      16             : #include "webrtc/base/checks.h"
      17             : #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
      18             : 
      19             : // Maximum number of samples in a low/high-band frame.
      20             : enum
      21             : {
      22             :     kMaxBandFrameLength = 320  // 10 ms at 64 kHz.
      23             : };
      24             : 
      25             : // QMF filter coefficients in Q16.
      26             : static const uint16_t WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
      27             : static const uint16_t WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
      28             : 
      29             : ///////////////////////////////////////////////////////////////////////////////////////////////
      30             : // WebRtcSpl_AllPassQMF(...)
      31             : //
      32             : // Allpass filter used by the analysis and synthesis parts of the QMF filter.
      33             : //
      34             : // Input:
      35             : //    - in_data             : Input data sequence (Q10)
      36             : //    - data_length         : Length of data sequence (>2)
      37             : //    - filter_coefficients : Filter coefficients (length 3, Q16)
      38             : //
      39             : // Input & Output:
      40             : //    - filter_state        : Filter state (length 6, Q10).
      41             : //
      42             : // Output:
      43             : //    - out_data            : Output data sequence (Q10), length equal to
      44             : //                            |data_length|
      45             : //
      46             : 
      47           0 : void WebRtcSpl_AllPassQMF(int32_t* in_data, size_t data_length,
      48             :                           int32_t* out_data, const uint16_t* filter_coefficients,
      49             :                           int32_t* filter_state)
      50             : {
      51             :     // The procedure is to filter the input with three first order all pass filters
      52             :     // (cascade operations).
      53             :     //
      54             :     //         a_3 + q^-1    a_2 + q^-1    a_1 + q^-1
      55             :     // y[n] =  -----------   -----------   -----------   x[n]
      56             :     //         1 + a_3q^-1   1 + a_2q^-1   1 + a_1q^-1
      57             :     //
      58             :     // The input vector |filter_coefficients| includes these three filter coefficients.
      59             :     // The filter state contains the in_data state, in_data[-1], followed by
      60             :     // the out_data state, out_data[-1]. This is repeated for each cascade.
      61             :     // The first cascade filter will filter the |in_data| and store the output in
      62             :     // |out_data|. The second will the take the |out_data| as input and make an
      63             :     // intermediate storage in |in_data|, to save memory. The third, and final, cascade
      64             :     // filter operation takes the |in_data| (which is the output from the previous cascade
      65             :     // filter) and store the output in |out_data|.
      66             :     // Note that the input vector values are changed during the process.
      67             :     size_t k;
      68             :     int32_t diff;
      69             :     // First all-pass cascade; filter from in_data to out_data.
      70             : 
      71             :     // Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
      72             :     // vector position n. Then the final output will be y[n] = y_3[n]
      73             : 
      74             :     // First loop, use the states stored in memory.
      75             :     // "diff" should be safe from wrap around since max values are 2^25
      76             :     // diff = (x[0] - y_1[-1])
      77           0 :     diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[1]);
      78             :     // y_1[0] =  x[-1] + a_1 * (x[0] - y_1[-1])
      79           0 :     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
      80             : 
      81             :     // For the remaining loops, use previous values.
      82           0 :     for (k = 1; k < data_length; k++)
      83             :     {
      84             :         // diff = (x[n] - y_1[n-1])
      85           0 :         diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
      86             :         // y_1[n] =  x[n-1] + a_1 * (x[n] - y_1[n-1])
      87           0 :         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
      88             :     }
      89             : 
      90             :     // Update states.
      91           0 :     filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
      92           0 :     filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
      93             : 
      94             :     // Second all-pass cascade; filter from out_data to in_data.
      95             :     // diff = (y_1[0] - y_2[-1])
      96           0 :     diff = WebRtcSpl_SubSatW32(out_data[0], filter_state[3]);
      97             :     // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
      98           0 :     in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
      99           0 :     for (k = 1; k < data_length; k++)
     100             :     {
     101             :         // diff = (y_1[n] - y_2[n-1])
     102           0 :         diff = WebRtcSpl_SubSatW32(out_data[k], in_data[k - 1]);
     103             :         // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
     104           0 :         in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
     105             :     }
     106             : 
     107           0 :     filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
     108           0 :     filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
     109             : 
     110             :     // Third all-pass cascade; filter from in_data to out_data.
     111             :     // diff = (y_2[0] - y[-1])
     112           0 :     diff = WebRtcSpl_SubSatW32(in_data[0], filter_state[5]);
     113             :     // y[0] =  y_2[-1] + a_3 * (y_2[0] - y[-1])
     114           0 :     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
     115           0 :     for (k = 1; k < data_length; k++)
     116             :     {
     117             :         // diff = (y_2[n] - y[n-1])
     118           0 :         diff = WebRtcSpl_SubSatW32(in_data[k], out_data[k - 1]);
     119             :         // y[n] =  y_2[n-1] + a_3 * (y_2[n] - y[n-1])
     120           0 :         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
     121             :     }
     122           0 :     filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
     123           0 :     filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
     124           0 : }
     125             : 
     126           0 : void WebRtcSpl_AnalysisQMF(const int16_t* in_data, size_t in_data_length,
     127             :                            int16_t* low_band, int16_t* high_band,
     128             :                            int32_t* filter_state1, int32_t* filter_state2)
     129             : {
     130             :     size_t i;
     131             :     int16_t k;
     132             :     int32_t tmp;
     133             :     int32_t half_in1[kMaxBandFrameLength];
     134             :     int32_t half_in2[kMaxBandFrameLength];
     135             :     int32_t filter1[kMaxBandFrameLength];
     136             :     int32_t filter2[kMaxBandFrameLength];
     137           0 :     const size_t band_length = in_data_length / 2;
     138           0 :     RTC_DCHECK_EQ(0, in_data_length % 2);
     139           0 :     RTC_DCHECK_LE(band_length, kMaxBandFrameLength);
     140             : 
     141             :     // Split even and odd samples. Also shift them to Q10.
     142           0 :     for (i = 0, k = 0; i < band_length; i++, k += 2)
     143             :     {
     144           0 :         half_in2[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k], 10);
     145           0 :         half_in1[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k + 1], 10);
     146             :     }
     147             : 
     148             :     // All pass filter even and odd samples, independently.
     149           0 :     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
     150             :                          WebRtcSpl_kAllPassFilter1, filter_state1);
     151           0 :     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
     152             :                          WebRtcSpl_kAllPassFilter2, filter_state2);
     153             : 
     154             :     // Take the sum and difference of filtered version of odd and even
     155             :     // branches to get upper & lower band.
     156           0 :     for (i = 0; i < band_length; i++)
     157             :     {
     158           0 :         tmp = (filter1[i] + filter2[i] + 1024) >> 11;
     159           0 :         low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
     160             : 
     161           0 :         tmp = (filter1[i] - filter2[i] + 1024) >> 11;
     162           0 :         high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
     163             :     }
     164           0 : }
     165             : 
     166           0 : void WebRtcSpl_SynthesisQMF(const int16_t* low_band, const int16_t* high_band,
     167             :                             size_t band_length, int16_t* out_data,
     168             :                             int32_t* filter_state1, int32_t* filter_state2)
     169             : {
     170             :     int32_t tmp;
     171             :     int32_t half_in1[kMaxBandFrameLength];
     172             :     int32_t half_in2[kMaxBandFrameLength];
     173             :     int32_t filter1[kMaxBandFrameLength];
     174             :     int32_t filter2[kMaxBandFrameLength];
     175             :     size_t i;
     176             :     int16_t k;
     177           0 :     RTC_DCHECK_LE(band_length, kMaxBandFrameLength);
     178             : 
     179             :     // Obtain the sum and difference channels out of upper and lower-band channels.
     180             :     // Also shift to Q10 domain.
     181           0 :     for (i = 0; i < band_length; i++)
     182             :     {
     183           0 :         tmp = (int32_t)low_band[i] + (int32_t)high_band[i];
     184           0 :         half_in1[i] = tmp * (1 << 10);
     185           0 :         tmp = (int32_t)low_band[i] - (int32_t)high_band[i];
     186           0 :         half_in2[i] = tmp * (1 << 10);
     187             :     }
     188             : 
     189             :     // all-pass filter the sum and difference channels
     190           0 :     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
     191             :                          WebRtcSpl_kAllPassFilter2, filter_state1);
     192           0 :     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
     193             :                          WebRtcSpl_kAllPassFilter1, filter_state2);
     194             : 
     195             :     // The filtered signals are even and odd samples of the output. Combine
     196             :     // them. The signals are Q10 should shift them back to Q0 and take care of
     197             :     // saturation.
     198           0 :     for (i = 0, k = 0; i < band_length; i++)
     199             :     {
     200           0 :         tmp = (filter2[i] + 512) >> 10;
     201           0 :         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
     202             : 
     203           0 :         tmp = (filter1[i] + 512) >> 10;
     204           0 :         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
     205             :     }
     206             : 
     207           0 : }

Generated by: LCOV version 1.13