LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/modules/audio_coding/neteq - dsp_helper.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 188 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 11 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
      12             : 
      13             : #include <assert.h>
      14             : #include <string.h>  // Access to memset.
      15             : 
      16             : #include <algorithm>  // Access to min, max.
      17             : 
      18             : #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
      19             : 
      20             : namespace webrtc {
      21             : 
      22             : // Table of constants used in method DspHelper::ParabolicFit().
      23             : const int16_t DspHelper::kParabolaCoefficients[17][3] = {
      24             :     { 120, 32, 64 },
      25             :     { 140, 44, 75 },
      26             :     { 150, 50, 80 },
      27             :     { 160, 57, 85 },
      28             :     { 180, 72, 96 },
      29             :     { 200, 89, 107 },
      30             :     { 210, 98, 112 },
      31             :     { 220, 108, 117 },
      32             :     { 240, 128, 128 },
      33             :     { 260, 150, 139 },
      34             :     { 270, 162, 144 },
      35             :     { 280, 174, 149 },
      36             :     { 300, 200, 160 },
      37             :     { 320, 228, 171 },
      38             :     { 330, 242, 176 },
      39             :     { 340, 257, 181 },
      40             :     { 360, 288, 192 } };
      41             : 
      42             : // Filter coefficients used when downsampling from the indicated sample rates
      43             : // (8, 16, 32, 48 kHz) to 4 kHz. Coefficients are in Q12. The corresponding Q0
      44             : // values are provided in the comments before each array.
      45             : 
      46             : // Q0 values: {0.3, 0.4, 0.3}.
      47             : const int16_t DspHelper::kDownsample8kHzTbl[3] = { 1229, 1638, 1229 };
      48             : 
      49             : // Q0 values: {0.15, 0.2, 0.3, 0.2, 0.15}.
      50             : const int16_t DspHelper::kDownsample16kHzTbl[5] = { 614, 819, 1229, 819, 614 };
      51             : 
      52             : // Q0 values: {0.1425, 0.1251, 0.1525, 0.1628, 0.1525, 0.1251, 0.1425}.
      53             : const int16_t DspHelper::kDownsample32kHzTbl[7] = {
      54             :     584, 512, 625, 667, 625, 512, 584 };
      55             : 
      56             : // Q0 values: {0.2487, 0.0952, 0.1042, 0.1074, 0.1042, 0.0952, 0.2487}.
      57             : const int16_t DspHelper::kDownsample48kHzTbl[7] = {
      58             :     1019, 390, 427, 440, 427, 390, 1019 };
      59             : 
      60           0 : int DspHelper::RampSignal(const int16_t* input,
      61             :                           size_t length,
      62             :                           int factor,
      63             :                           int increment,
      64             :                           int16_t* output) {
      65           0 :   int factor_q20 = (factor << 6) + 32;
      66             :   // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14?
      67           0 :   for (size_t i = 0; i < length; ++i) {
      68           0 :     output[i] = (factor * input[i] + 8192) >> 14;
      69           0 :     factor_q20 += increment;
      70           0 :     factor_q20 = std::max(factor_q20, 0);  // Never go negative.
      71           0 :     factor = std::min(factor_q20 >> 6, 16384);
      72             :   }
      73           0 :   return factor;
      74             : }
      75             : 
      76           0 : int DspHelper::RampSignal(int16_t* signal,
      77             :                           size_t length,
      78             :                           int factor,
      79             :                           int increment) {
      80           0 :   return RampSignal(signal, length, factor, increment, signal);
      81             : }
      82             : 
      83           0 : int DspHelper::RampSignal(AudioVector* signal,
      84             :                           size_t start_index,
      85             :                           size_t length,
      86             :                           int factor,
      87             :                           int increment) {
      88           0 :   int factor_q20 = (factor << 6) + 32;
      89             :   // TODO(hlundin): Add 32 to factor_q20 when converting back to Q14?
      90           0 :   for (size_t i = start_index; i < start_index + length; ++i) {
      91           0 :     (*signal)[i] = (factor * (*signal)[i] + 8192) >> 14;
      92           0 :     factor_q20 += increment;
      93           0 :     factor_q20 = std::max(factor_q20, 0);  // Never go negative.
      94           0 :     factor = std::min(factor_q20 >> 6, 16384);
      95             :   }
      96           0 :   return factor;
      97             : }
      98             : 
      99           0 : int DspHelper::RampSignal(AudioMultiVector* signal,
     100             :                           size_t start_index,
     101             :                           size_t length,
     102             :                           int factor,
     103             :                           int increment) {
     104           0 :   assert(start_index + length <= signal->Size());
     105           0 :   if (start_index + length > signal->Size()) {
     106             :     // Wrong parameters. Do nothing and return the scale factor unaltered.
     107           0 :     return factor;
     108             :   }
     109           0 :   int end_factor = 0;
     110             :   // Loop over the channels, starting at the same |factor| each time.
     111           0 :   for (size_t channel = 0; channel < signal->Channels(); ++channel) {
     112             :     end_factor =
     113           0 :         RampSignal(&(*signal)[channel], start_index, length, factor, increment);
     114             :   }
     115           0 :   return end_factor;
     116             : }
     117             : 
     118           0 : void DspHelper::PeakDetection(int16_t* data, size_t data_length,
     119             :                               size_t num_peaks, int fs_mult,
     120             :                               size_t* peak_index, int16_t* peak_value) {
     121           0 :   size_t min_index = 0;
     122           0 :   size_t max_index = 0;
     123             : 
     124           0 :   for (size_t i = 0; i <= num_peaks - 1; i++) {
     125           0 :     if (num_peaks == 1) {
     126             :       // Single peak.  The parabola fit assumes that an extra point is
     127             :       // available; worst case it gets a zero on the high end of the signal.
     128             :       // TODO(hlundin): This can potentially get much worse. It breaks the
     129             :       // API contract, that the length of |data| is |data_length|.
     130           0 :       data_length++;
     131             :     }
     132             : 
     133           0 :     peak_index[i] = WebRtcSpl_MaxIndexW16(data, data_length - 1);
     134             : 
     135           0 :     if (i != num_peaks - 1) {
     136           0 :       min_index = (peak_index[i] > 2) ? (peak_index[i] - 2) : 0;
     137           0 :       max_index = std::min(data_length - 1, peak_index[i] + 2);
     138             :     }
     139             : 
     140           0 :     if ((peak_index[i] != 0) && (peak_index[i] != (data_length - 2))) {
     141           0 :       ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i],
     142           0 :                    &peak_value[i]);
     143             :     } else {
     144           0 :       if (peak_index[i] == data_length - 2) {
     145           0 :         if (data[peak_index[i]] > data[peak_index[i] + 1]) {
     146           0 :           ParabolicFit(&data[peak_index[i] - 1], fs_mult, &peak_index[i],
     147           0 :                        &peak_value[i]);
     148           0 :         } else if (data[peak_index[i]] <= data[peak_index[i] + 1]) {
     149             :           // Linear approximation.
     150           0 :           peak_value[i] = (data[peak_index[i]] + data[peak_index[i] + 1]) >> 1;
     151           0 :           peak_index[i] = (peak_index[i] * 2 + 1) * fs_mult;
     152             :         }
     153             :       } else {
     154           0 :         peak_value[i] = data[peak_index[i]];
     155           0 :         peak_index[i] = peak_index[i] * 2 * fs_mult;
     156             :       }
     157             :     }
     158             : 
     159           0 :     if (i != num_peaks - 1) {
     160           0 :       memset(&data[min_index], 0,
     161           0 :              sizeof(data[0]) * (max_index - min_index + 1));
     162             :     }
     163             :   }
     164           0 : }
     165             : 
     166           0 : void DspHelper::ParabolicFit(int16_t* signal_points, int fs_mult,
     167             :                              size_t* peak_index, int16_t* peak_value) {
     168             :   uint16_t fit_index[13];
     169           0 :   if (fs_mult == 1) {
     170           0 :     fit_index[0] = 0;
     171           0 :     fit_index[1] = 8;
     172           0 :     fit_index[2] = 16;
     173           0 :   } else if (fs_mult == 2) {
     174           0 :     fit_index[0] = 0;
     175           0 :     fit_index[1] = 4;
     176           0 :     fit_index[2] = 8;
     177           0 :     fit_index[3] = 12;
     178           0 :     fit_index[4] = 16;
     179           0 :   } else if (fs_mult == 4) {
     180           0 :     fit_index[0] = 0;
     181           0 :     fit_index[1] = 2;
     182           0 :     fit_index[2] = 4;
     183           0 :     fit_index[3] = 6;
     184           0 :     fit_index[4] = 8;
     185           0 :     fit_index[5] = 10;
     186           0 :     fit_index[6] = 12;
     187           0 :     fit_index[7] = 14;
     188           0 :     fit_index[8] = 16;
     189             :   } else {
     190           0 :     fit_index[0] = 0;
     191           0 :     fit_index[1] = 1;
     192           0 :     fit_index[2] = 3;
     193           0 :     fit_index[3] = 4;
     194           0 :     fit_index[4] = 5;
     195           0 :     fit_index[5] = 7;
     196           0 :     fit_index[6] = 8;
     197           0 :     fit_index[7] = 9;
     198           0 :     fit_index[8] = 11;
     199           0 :     fit_index[9] = 12;
     200           0 :     fit_index[10] = 13;
     201           0 :     fit_index[11] = 15;
     202           0 :     fit_index[12] = 16;
     203             :   }
     204             : 
     205             :   //  num = -3 * signal_points[0] + 4 * signal_points[1] - signal_points[2];
     206             :   //  den =      signal_points[0] - 2 * signal_points[1] + signal_points[2];
     207           0 :   int32_t num = (signal_points[0] * -3) + (signal_points[1] * 4)
     208           0 :       - signal_points[2];
     209           0 :   int32_t den = signal_points[0] + (signal_points[1] * -2) + signal_points[2];
     210           0 :   int32_t temp = num * 120;
     211           0 :   int flag = 1;
     212           0 :   int16_t stp = kParabolaCoefficients[fit_index[fs_mult]][0]
     213           0 :       - kParabolaCoefficients[fit_index[fs_mult - 1]][0];
     214           0 :   int16_t strt = (kParabolaCoefficients[fit_index[fs_mult]][0]
     215           0 :       + kParabolaCoefficients[fit_index[fs_mult - 1]][0]) / 2;
     216             :   int16_t lmt;
     217           0 :   if (temp < -den * strt) {
     218           0 :     lmt = strt - stp;
     219           0 :     while (flag) {
     220           0 :       if ((flag == fs_mult) || (temp > -den * lmt)) {
     221           0 :         *peak_value = (den * kParabolaCoefficients[fit_index[fs_mult - flag]][1]
     222           0 :             + num * kParabolaCoefficients[fit_index[fs_mult - flag]][2]
     223           0 :             + signal_points[0] * 256) / 256;
     224           0 :         *peak_index = *peak_index * 2 * fs_mult - flag;
     225           0 :         flag = 0;
     226             :       } else {
     227           0 :         flag++;
     228           0 :         lmt -= stp;
     229             :       }
     230             :     }
     231           0 :   } else if (temp > -den * (strt + stp)) {
     232           0 :     lmt = strt + 2 * stp;
     233           0 :     while (flag) {
     234           0 :       if ((flag == fs_mult) || (temp < -den * lmt)) {
     235             :         int32_t temp_term_1 =
     236           0 :             den * kParabolaCoefficients[fit_index[fs_mult+flag]][1];
     237             :         int32_t temp_term_2 =
     238           0 :             num * kParabolaCoefficients[fit_index[fs_mult+flag]][2];
     239           0 :         int32_t temp_term_3 = signal_points[0] * 256;
     240           0 :         *peak_value = (temp_term_1 + temp_term_2 + temp_term_3) / 256;
     241           0 :         *peak_index = *peak_index * 2 * fs_mult + flag;
     242           0 :         flag = 0;
     243             :       } else {
     244           0 :         flag++;
     245           0 :         lmt += stp;
     246             :       }
     247             :     }
     248             :   } else {
     249           0 :     *peak_value = signal_points[1];
     250           0 :     *peak_index = *peak_index * 2 * fs_mult;
     251             :   }
     252           0 : }
     253             : 
     254           0 : size_t DspHelper::MinDistortion(const int16_t* signal, size_t min_lag,
     255             :                                 size_t max_lag, size_t length,
     256             :                                 int32_t* distortion_value) {
     257           0 :   size_t best_index = 0;
     258           0 :   int32_t min_distortion = WEBRTC_SPL_WORD32_MAX;
     259           0 :   for (size_t i = min_lag; i <= max_lag; i++) {
     260           0 :     int32_t sum_diff = 0;
     261           0 :     const int16_t* data1 = signal;
     262           0 :     const int16_t* data2 = signal - i;
     263           0 :     for (size_t j = 0; j < length; j++) {
     264           0 :       sum_diff += WEBRTC_SPL_ABS_W32(data1[j] - data2[j]);
     265             :     }
     266             :     // Compare with previous minimum.
     267           0 :     if (sum_diff < min_distortion) {
     268           0 :       min_distortion = sum_diff;
     269           0 :       best_index = i;
     270             :     }
     271             :   }
     272           0 :   *distortion_value = min_distortion;
     273           0 :   return best_index;
     274             : }
     275             : 
     276           0 : void DspHelper::CrossFade(const int16_t* input1, const int16_t* input2,
     277             :                           size_t length, int16_t* mix_factor,
     278             :                           int16_t factor_decrement, int16_t* output) {
     279           0 :   int16_t factor = *mix_factor;
     280           0 :   int16_t complement_factor = 16384 - factor;
     281           0 :   for (size_t i = 0; i < length; i++) {
     282           0 :     output[i] =
     283           0 :         (factor * input1[i] + complement_factor * input2[i] + 8192) >> 14;
     284           0 :     factor -= factor_decrement;
     285           0 :     complement_factor += factor_decrement;
     286             :   }
     287           0 :   *mix_factor = factor;
     288           0 : }
     289             : 
     290           0 : void DspHelper::UnmuteSignal(const int16_t* input, size_t length,
     291             :                              int16_t* factor, int increment,
     292             :                              int16_t* output) {
     293           0 :   uint16_t factor_16b = *factor;
     294           0 :   int32_t factor_32b = (static_cast<int32_t>(factor_16b) << 6) + 32;
     295           0 :   for (size_t i = 0; i < length; i++) {
     296           0 :     output[i] = (factor_16b * input[i] + 8192) >> 14;
     297           0 :     factor_32b = std::max(factor_32b + increment, 0);
     298           0 :     factor_16b = std::min(16384, factor_32b >> 6);
     299             :   }
     300           0 :   *factor = factor_16b;
     301           0 : }
     302             : 
     303           0 : void DspHelper::MuteSignal(int16_t* signal, int mute_slope, size_t length) {
     304           0 :   int32_t factor = (16384 << 6) + 32;
     305           0 :   for (size_t i = 0; i < length; i++) {
     306           0 :     signal[i] = ((factor >> 6) * signal[i] + 8192) >> 14;
     307           0 :     factor -= mute_slope;
     308             :   }
     309           0 : }
     310             : 
     311           0 : int DspHelper::DownsampleTo4kHz(const int16_t* input, size_t input_length,
     312             :                                 size_t output_length, int input_rate_hz,
     313             :                                 bool compensate_delay, int16_t* output) {
     314             :   // Set filter parameters depending on input frequency.
     315             :   // NOTE: The phase delay values are wrong compared to the true phase delay
     316             :   // of the filters. However, the error is preserved (through the +1 term) for
     317             :   // consistency.
     318             :   const int16_t* filter_coefficients;  // Filter coefficients.
     319             :   size_t filter_length;  // Number of coefficients.
     320             :   size_t filter_delay;  // Phase delay in samples.
     321             :   int16_t factor;  // Conversion rate (inFsHz / 8000).
     322           0 :   switch (input_rate_hz) {
     323             :     case 8000: {
     324           0 :       filter_length = 3;
     325           0 :       factor = 2;
     326           0 :       filter_coefficients = kDownsample8kHzTbl;
     327           0 :       filter_delay = 1 + 1;
     328           0 :       break;
     329             :     }
     330             :     case 16000: {
     331           0 :       filter_length = 5;
     332           0 :       factor = 4;
     333           0 :       filter_coefficients = kDownsample16kHzTbl;
     334           0 :       filter_delay = 2 + 1;
     335           0 :       break;
     336             :     }
     337             :     case 32000: {
     338           0 :       filter_length = 7;
     339           0 :       factor = 8;
     340           0 :       filter_coefficients = kDownsample32kHzTbl;
     341           0 :       filter_delay = 3 + 1;
     342           0 :       break;
     343             :     }
     344             :     case 48000: {
     345           0 :       filter_length = 7;
     346           0 :       factor = 12;
     347           0 :       filter_coefficients = kDownsample48kHzTbl;
     348           0 :       filter_delay = 3 + 1;
     349           0 :       break;
     350             :     }
     351             :     default: {
     352           0 :       assert(false);
     353             :       return -1;
     354             :     }
     355             :   }
     356             : 
     357           0 :   if (!compensate_delay) {
     358             :     // Disregard delay compensation.
     359           0 :     filter_delay = 0;
     360             :   }
     361             : 
     362             :   // Returns -1 if input signal is too short; 0 otherwise.
     363           0 :   return WebRtcSpl_DownsampleFast(
     364           0 :       &input[filter_length - 1], input_length - filter_length + 1, output,
     365           0 :       output_length, filter_coefficients, filter_length, factor, filter_delay);
     366             : }
     367             : 
     368             : }  // namespace webrtc

Generated by: LCOV version 1.13