LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/modules/audio_coding/neteq - merge.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 174 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 7 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include "webrtc/modules/audio_coding/neteq/merge.h"
      12             : 
      13             : #include <assert.h>
      14             : #include <string.h>  // memmove, memcpy, memset, size_t
      15             : 
      16             : #include <algorithm>  // min, max
      17             : #include <memory>
      18             : 
      19             : #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
      20             : #include "webrtc/modules/audio_coding/neteq/audio_multi_vector.h"
      21             : #include "webrtc/modules/audio_coding/neteq/cross_correlation.h"
      22             : #include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
      23             : #include "webrtc/modules/audio_coding/neteq/expand.h"
      24             : #include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
      25             : 
      26             : namespace webrtc {
      27             : 
      28           0 : Merge::Merge(int fs_hz,
      29             :              size_t num_channels,
      30             :              Expand* expand,
      31           0 :              SyncBuffer* sync_buffer)
      32             :     : fs_hz_(fs_hz),
      33             :       num_channels_(num_channels),
      34           0 :       fs_mult_(fs_hz_ / 8000),
      35           0 :       timestamps_per_call_(static_cast<size_t>(fs_hz_ / 100)),
      36             :       expand_(expand),
      37             :       sync_buffer_(sync_buffer),
      38           0 :       expanded_(num_channels_) {
      39           0 :   assert(num_channels_ > 0);
      40           0 : }
      41             : 
      42             : Merge::~Merge() = default;
      43             : 
      44           0 : size_t Merge::Process(int16_t* input, size_t input_length,
      45             :                       int16_t* external_mute_factor_array,
      46             :                       AudioMultiVector* output) {
      47             :   // TODO(hlundin): Change to an enumerator and skip assert.
      48           0 :   assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ ==  32000 ||
      49             :          fs_hz_ == 48000);
      50           0 :   assert(fs_hz_ <= kMaxSampleRate);  // Should not be possible.
      51             : 
      52             :   size_t old_length;
      53             :   size_t expand_period;
      54             :   // Get expansion data to overlap and mix with.
      55           0 :   size_t expanded_length = GetExpandedSignal(&old_length, &expand_period);
      56             : 
      57             :   // Transfer input signal to an AudioMultiVector.
      58           0 :   AudioMultiVector input_vector(num_channels_);
      59           0 :   input_vector.PushBackInterleaved(input, input_length);
      60           0 :   size_t input_length_per_channel = input_vector.Size();
      61           0 :   assert(input_length_per_channel == input_length / num_channels_);
      62             : 
      63           0 :   size_t best_correlation_index = 0;
      64           0 :   size_t output_length = 0;
      65             : 
      66             :   std::unique_ptr<int16_t[]> input_channel(
      67           0 :       new int16_t[input_length_per_channel]);
      68           0 :   std::unique_ptr<int16_t[]> expanded_channel(new int16_t[expanded_length]);
      69           0 :   for (size_t channel = 0; channel < num_channels_; ++channel) {
      70           0 :     input_vector[channel].CopyTo(
      71           0 :         input_length_per_channel, 0, input_channel.get());
      72           0 :     expanded_[channel].CopyTo(expanded_length, 0, expanded_channel.get());
      73             : 
      74           0 :     int16_t new_mute_factor = SignalScaling(
      75           0 :         input_channel.get(), input_length_per_channel, expanded_channel.get());
      76             : 
      77             :     // Adjust muting factor (product of "main" muting factor and expand muting
      78             :     // factor).
      79           0 :     int16_t* external_mute_factor = &external_mute_factor_array[channel];
      80           0 :     *external_mute_factor =
      81           0 :         (*external_mute_factor * expand_->MuteFactor(channel)) >> 14;
      82             : 
      83             :     // Update |external_mute_factor| if it is lower than |new_mute_factor|.
      84           0 :     if (new_mute_factor > *external_mute_factor) {
      85           0 :       *external_mute_factor = std::min(new_mute_factor,
      86           0 :                                        static_cast<int16_t>(16384));
      87             :     }
      88             : 
      89           0 :     if (channel == 0) {
      90             :       // Downsample, correlate, and find strongest correlation period for the
      91             :       // master (i.e., first) channel only.
      92             :       // Downsample to 4kHz sample rate.
      93           0 :       Downsample(input_channel.get(), input_length_per_channel,
      94           0 :                  expanded_channel.get(), expanded_length);
      95             : 
      96             :       // Calculate the lag of the strongest correlation period.
      97           0 :       best_correlation_index = CorrelateAndPeakSearch(
      98           0 :           old_length, input_length_per_channel, expand_period);
      99             :     }
     100             : 
     101           0 :     temp_data_.resize(input_length_per_channel + best_correlation_index);
     102           0 :     int16_t* decoded_output = temp_data_.data() + best_correlation_index;
     103             : 
     104             :     // Mute the new decoded data if needed (and unmute it linearly).
     105             :     // This is the overlapping part of expanded_signal.
     106           0 :     size_t interpolation_length = std::min(
     107           0 :         kMaxCorrelationLength * fs_mult_,
     108           0 :         expanded_length - best_correlation_index);
     109           0 :     interpolation_length = std::min(interpolation_length,
     110           0 :                                     input_length_per_channel);
     111           0 :     if (*external_mute_factor < 16384) {
     112             :       // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
     113             :       // and so on.
     114           0 :       int increment = 4194 / fs_mult_;
     115           0 :       *external_mute_factor =
     116           0 :           static_cast<int16_t>(DspHelper::RampSignal(input_channel.get(),
     117             :                                                      interpolation_length,
     118           0 :                                                      *external_mute_factor,
     119           0 :                                                      increment));
     120           0 :       DspHelper::UnmuteSignal(&input_channel[interpolation_length],
     121             :                               input_length_per_channel - interpolation_length,
     122             :                               external_mute_factor, increment,
     123           0 :                               &decoded_output[interpolation_length]);
     124             :     } else {
     125             :       // No muting needed.
     126           0 :       memmove(
     127           0 :           &decoded_output[interpolation_length],
     128           0 :           &input_channel[interpolation_length],
     129           0 :           sizeof(int16_t) * (input_length_per_channel - interpolation_length));
     130             :     }
     131             : 
     132             :     // Do overlap and mix linearly.
     133             :     int16_t increment =
     134           0 :         static_cast<int16_t>(16384 / (interpolation_length + 1));  // In Q14.
     135           0 :     int16_t mute_factor = 16384 - increment;
     136           0 :     memmove(temp_data_.data(), expanded_channel.get(),
     137           0 :             sizeof(int16_t) * best_correlation_index);
     138           0 :     DspHelper::CrossFade(&expanded_channel[best_correlation_index],
     139           0 :                          input_channel.get(), interpolation_length,
     140           0 :                          &mute_factor, increment, decoded_output);
     141             : 
     142           0 :     output_length = best_correlation_index + input_length_per_channel;
     143           0 :     if (channel == 0) {
     144           0 :       assert(output->Empty());  // Output should be empty at this point.
     145           0 :       output->AssertSize(output_length);
     146             :     } else {
     147           0 :       assert(output->Size() == output_length);
     148             :     }
     149           0 :     (*output)[channel].OverwriteAt(temp_data_.data(), output_length, 0);
     150             :   }
     151             : 
     152             :   // Copy back the first part of the data to |sync_buffer_| and remove it from
     153             :   // |output|.
     154           0 :   sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
     155           0 :   output->PopFront(old_length);
     156             : 
     157             :   // Return new added length. |old_length| samples were borrowed from
     158             :   // |sync_buffer_|.
     159           0 :   return output_length - old_length;
     160             : }
     161             : 
     162           0 : size_t Merge::GetExpandedSignal(size_t* old_length, size_t* expand_period) {
     163             :   // Check how much data that is left since earlier.
     164           0 :   *old_length = sync_buffer_->FutureLength();
     165             :   // Should never be less than overlap_length.
     166           0 :   assert(*old_length >= expand_->overlap_length());
     167             :   // Generate data to merge the overlap with using expand.
     168           0 :   expand_->SetParametersForMergeAfterExpand();
     169             : 
     170           0 :   if (*old_length >= 210 * kMaxSampleRate / 8000) {
     171             :     // TODO(hlundin): Write test case for this.
     172             :     // The number of samples available in the sync buffer is more than what fits
     173             :     // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
     174             :     // but shift them towards the end of the buffer. This is ok, since all of
     175             :     // the buffer will be expand data anyway, so as long as the beginning is
     176             :     // left untouched, we're fine.
     177           0 :     size_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
     178           0 :     sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
     179           0 :     *old_length = 210 * kMaxSampleRate / 8000;
     180             :     // This is the truncated length.
     181             :   }
     182             :   // This assert should always be true thanks to the if statement above.
     183           0 :   assert(210 * kMaxSampleRate / 8000 >= *old_length);
     184             : 
     185           0 :   AudioMultiVector expanded_temp(num_channels_);
     186           0 :   expand_->Process(&expanded_temp);
     187           0 :   *expand_period = expanded_temp.Size();  // Samples per channel.
     188             : 
     189           0 :   expanded_.Clear();
     190             :   // Copy what is left since earlier into the expanded vector.
     191           0 :   expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
     192           0 :   assert(expanded_.Size() == *old_length);
     193           0 :   assert(expanded_temp.Size() > 0);
     194             :   // Do "ugly" copy and paste from the expanded in order to generate more data
     195             :   // to correlate (but not interpolate) with.
     196           0 :   const size_t required_length = static_cast<size_t>((120 + 80 + 2) * fs_mult_);
     197           0 :   if (expanded_.Size() < required_length) {
     198           0 :     while (expanded_.Size() < required_length) {
     199             :       // Append one more pitch period each time.
     200           0 :       expanded_.PushBack(expanded_temp);
     201             :     }
     202             :     // Trim the length to exactly |required_length|.
     203           0 :     expanded_.PopBack(expanded_.Size() - required_length);
     204             :   }
     205           0 :   assert(expanded_.Size() >= required_length);
     206           0 :   return required_length;
     207             : }
     208             : 
     209           0 : int16_t Merge::SignalScaling(const int16_t* input, size_t input_length,
     210             :                              const int16_t* expanded_signal) const {
     211             :   // Adjust muting factor if new vector is more or less of the BGN energy.
     212             :   const size_t mod_input_length =
     213           0 :       std::min(static_cast<size_t>(64 * fs_mult_), input_length);
     214             :   const int16_t expanded_max =
     215           0 :       WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
     216           0 :   int32_t factor = (expanded_max * expanded_max) /
     217           0 :       (std::numeric_limits<int32_t>::max() /
     218           0 :           static_cast<int32_t>(mod_input_length));
     219           0 :   const int expanded_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
     220             :   int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal,
     221             :                                                           expanded_signal,
     222             :                                                           mod_input_length,
     223           0 :                                                           expanded_shift);
     224             : 
     225             :   // Calculate energy of input signal.
     226           0 :   const int16_t input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);
     227           0 :   factor = (input_max * input_max) / (std::numeric_limits<int32_t>::max() /
     228             :       static_cast<int32_t>(mod_input_length));
     229           0 :   const int input_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor);
     230             :   int32_t energy_input = WebRtcSpl_DotProductWithScale(input, input,
     231             :                                                        mod_input_length,
     232           0 :                                                        input_shift);
     233             : 
     234             :   // Align to the same Q-domain.
     235           0 :   if (input_shift > expanded_shift) {
     236           0 :     energy_expanded = energy_expanded >> (input_shift - expanded_shift);
     237             :   } else {
     238           0 :     energy_input = energy_input >> (expanded_shift - input_shift);
     239             :   }
     240             : 
     241             :   // Calculate muting factor to use for new frame.
     242             :   int16_t mute_factor;
     243           0 :   if (energy_input > energy_expanded) {
     244             :     // Normalize |energy_input| to 14 bits.
     245           0 :     int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
     246           0 :     energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
     247             :     // Put |energy_expanded| in a domain 14 higher, so that
     248             :     // energy_expanded / energy_input is in Q14.
     249           0 :     energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
     250             :     // Calculate sqrt(energy_expanded / energy_input) in Q14.
     251           0 :     mute_factor = static_cast<int16_t>(
     252           0 :         WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14));
     253             :   } else {
     254             :     // Set to 1 (in Q14) when |expanded| has higher energy than |input|.
     255           0 :     mute_factor = 16384;
     256             :   }
     257             : 
     258           0 :   return mute_factor;
     259             : }
     260             : 
     261             : // TODO(hlundin): There are some parameter values in this method that seem
     262             : // strange. Compare with Expand::Correlation.
     263           0 : void Merge::Downsample(const int16_t* input, size_t input_length,
     264             :                        const int16_t* expanded_signal, size_t expanded_length) {
     265             :   const int16_t* filter_coefficients;
     266             :   size_t num_coefficients;
     267           0 :   int decimation_factor = fs_hz_ / 4000;
     268             :   static const size_t kCompensateDelay = 0;
     269           0 :   size_t length_limit = static_cast<size_t>(fs_hz_ / 100);  // 10 ms in samples.
     270           0 :   if (fs_hz_ == 8000) {
     271           0 :     filter_coefficients = DspHelper::kDownsample8kHzTbl;
     272           0 :     num_coefficients = 3;
     273           0 :   } else if (fs_hz_ == 16000) {
     274           0 :     filter_coefficients = DspHelper::kDownsample16kHzTbl;
     275           0 :     num_coefficients = 5;
     276           0 :   } else if (fs_hz_ == 32000) {
     277           0 :     filter_coefficients = DspHelper::kDownsample32kHzTbl;
     278           0 :     num_coefficients = 7;
     279             :   } else {  // fs_hz_ == 48000
     280           0 :     filter_coefficients = DspHelper::kDownsample48kHzTbl;
     281           0 :     num_coefficients = 7;
     282             :   }
     283           0 :   size_t signal_offset = num_coefficients - 1;
     284           0 :   WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset],
     285             :                            expanded_length - signal_offset,
     286             :                            expanded_downsampled_, kExpandDownsampLength,
     287             :                            filter_coefficients, num_coefficients,
     288           0 :                            decimation_factor, kCompensateDelay);
     289           0 :   if (input_length <= length_limit) {
     290             :     // Not quite long enough, so we have to cheat a bit.
     291           0 :     size_t temp_len = input_length - signal_offset;
     292             :     // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off
     293             :     // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
     294           0 :     size_t downsamp_temp_len = temp_len / decimation_factor;
     295           0 :     WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
     296             :                              input_downsampled_, downsamp_temp_len,
     297             :                              filter_coefficients, num_coefficients,
     298           0 :                              decimation_factor, kCompensateDelay);
     299           0 :     memset(&input_downsampled_[downsamp_temp_len], 0,
     300           0 :            sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
     301             :   } else {
     302           0 :     WebRtcSpl_DownsampleFast(&input[signal_offset],
     303             :                              input_length - signal_offset, input_downsampled_,
     304             :                              kInputDownsampLength, filter_coefficients,
     305             :                              num_coefficients, decimation_factor,
     306           0 :                              kCompensateDelay);
     307             :   }
     308           0 : }
     309             : 
     310           0 : size_t Merge::CorrelateAndPeakSearch(size_t start_position, size_t input_length,
     311             :                                      size_t expand_period) const {
     312             :   // Calculate correlation without any normalization.
     313           0 :   const size_t max_corr_length = kMaxCorrelationLength;
     314             :   size_t stop_position_downsamp =
     315           0 :       std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
     316             : 
     317             :   int32_t correlation[kMaxCorrelationLength];
     318           0 :   CrossCorrelationWithAutoShift(input_downsampled_, expanded_downsampled_,
     319             :                                 kInputDownsampLength, stop_position_downsamp, 1,
     320           0 :                                 correlation);
     321             : 
     322             :   // Normalize correlation to 14 bits and copy to a 16-bit array.
     323           0 :   const size_t pad_length = expand_->overlap_length() - 1;
     324           0 :   const size_t correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
     325             :   std::unique_ptr<int16_t[]> correlation16(
     326           0 :       new int16_t[correlation_buffer_size]);
     327           0 :   memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
     328           0 :   int16_t* correlation_ptr = &correlation16[pad_length];
     329           0 :   int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
     330           0 :                                                      stop_position_downsamp);
     331           0 :   int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
     332             :   WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
     333           0 :                                    correlation, norm_shift);
     334             : 
     335             :   // Calculate allowed starting point for peak finding.
     336             :   // The peak location bestIndex must fulfill two criteria:
     337             :   // (1) w16_bestIndex + input_length <
     338             :   //     timestamps_per_call_ + expand_->overlap_length();
     339             :   // (2) w16_bestIndex + input_length < start_position.
     340           0 :   size_t start_index = timestamps_per_call_ + expand_->overlap_length();
     341           0 :   start_index = std::max(start_position, start_index);
     342           0 :   start_index = (input_length > start_index) ? 0 : (start_index - input_length);
     343             :   // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
     344           0 :   size_t start_index_downsamp = start_index / (fs_mult_ * 2);
     345             : 
     346             :   // Calculate a modified |stop_position_downsamp| to account for the increased
     347             :   // start index |start_index_downsamp| and the effective array length.
     348             :   size_t modified_stop_pos =
     349             :       std::min(stop_position_downsamp,
     350           0 :                kMaxCorrelationLength + pad_length - start_index_downsamp);
     351             :   size_t best_correlation_index;
     352             :   int16_t best_correlation;
     353             :   static const size_t kNumCorrelationCandidates = 1;
     354           0 :   DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
     355             :                            modified_stop_pos, kNumCorrelationCandidates,
     356           0 :                            fs_mult_, &best_correlation_index,
     357           0 :                            &best_correlation);
     358             :   // Compensate for modified start index.
     359           0 :   best_correlation_index += start_index;
     360             : 
     361             :   // Ensure that underrun does not occur for 10ms case => we have to get at
     362             :   // least 10ms + overlap . (This should never happen thanks to the above
     363             :   // modification of peak-finding starting point.)
     364           0 :   while (((best_correlation_index + input_length) <
     365           0 :           (timestamps_per_call_ + expand_->overlap_length())) ||
     366           0 :          ((best_correlation_index + input_length) < start_position)) {
     367           0 :     assert(false);  // Should never happen.
     368             :     best_correlation_index += expand_period;  // Jump one lag ahead.
     369             :   }
     370           0 :   return best_correlation_index;
     371             : }
     372             : 
     373           0 : size_t Merge::RequiredFutureSamples() {
     374           0 :   return fs_hz_ / 100 * num_channels_;  // 10 ms.
     375             : }
     376             : 
     377             : 
     378             : }  // namespace webrtc

Generated by: LCOV version 1.13