LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/modules/audio_processing/agc/legacy - digital_agc.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 308 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 6 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : /* digital_agc.c
      12             :  *
      13             :  */
      14             : 
      15             : #include "webrtc/modules/audio_processing/agc/legacy/digital_agc.h"
      16             : 
      17             : #include <string.h>
      18             : #ifdef WEBRTC_AGC_DEBUG_DUMP
      19             : #include <stdio.h>
      20             : #endif
      21             : 
      22             : #include "webrtc/base/checks.h"
      23             : #include "webrtc/modules/audio_processing/agc/legacy/gain_control.h"
      24             : 
      25             : // To generate the gaintable, copy&paste the following lines to a Matlab window:
      26             : // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
      27             : // zeros = 0:31; lvl = 2.^(1-zeros);
      28             : // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
      29             : // B = MaxGain - MinGain;
      30             : // gains = round(2^16*10.^(0.05 * (MinGain + B * (
      31             : // log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) /
      32             : // log(1/(1+exp(Knee*B))))));
      33             : // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
      34             : // % Matlab code for plotting the gain and input/output level characteristic
      35             : // (copy/paste the following 3 lines):
      36             : // in = 10*log10(lvl); out = 20*log10(gains/65536);
      37             : // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input
      38             : // (dB)'); ylabel('Gain (dB)');
      39             : // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on;
      40             : // xlabel('Input (dB)'); ylabel('Output (dB)');
      41             : // zoom on;
      42             : 
      43             : // Generator table for y=log2(1+e^x) in Q8.
      44             : enum { kGenFuncTableSize = 128 };
      45             : static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
      46             :     256,   485,   786,   1126,  1484,  1849,  2217,  2586,  2955,  3324,  3693,
      47             :     4063,  4432,  4801,  5171,  5540,  5909,  6279,  6648,  7017,  7387,  7756,
      48             :     8125,  8495,  8864,  9233,  9603,  9972,  10341, 10711, 11080, 11449, 11819,
      49             :     12188, 12557, 12927, 13296, 13665, 14035, 14404, 14773, 15143, 15512, 15881,
      50             :     16251, 16620, 16989, 17359, 17728, 18097, 18466, 18836, 19205, 19574, 19944,
      51             :     20313, 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, 23637, 24006,
      52             :     24376, 24745, 25114, 25484, 25853, 26222, 26592, 26961, 27330, 27700, 28069,
      53             :     28438, 28808, 29177, 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
      54             :     32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, 35456, 35825, 36194,
      55             :     36564, 36933, 37302, 37672, 38041, 38410, 38780, 39149, 39518, 39888, 40257,
      56             :     40626, 40996, 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, 44320,
      57             :     44689, 45058, 45428, 45797, 46166, 46536, 46905};
      58             : 
      59             : static const int16_t kAvgDecayTime = 250;  // frames; < 3000
      60             : 
      61           0 : int32_t WebRtcAgc_CalculateGainTable(int32_t* gainTable,       // Q16
      62             :                                      int16_t digCompGaindB,    // Q0
      63             :                                      int16_t targetLevelDbfs,  // Q0
      64             :                                      uint8_t limiterEnable,
      65             :                                      int16_t analogTarget)  // Q0
      66             : {
      67             :   // This function generates the compressor gain table used in the fixed digital
      68             :   // part.
      69             :   uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
      70             :   int32_t inLevel, limiterLvl;
      71             :   int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
      72           0 :   const uint16_t kLog10 = 54426;    // log2(10)     in Q14
      73           0 :   const uint16_t kLog10_2 = 49321;  // 10*log10(2)  in Q14
      74           0 :   const uint16_t kLogE_1 = 23637;   // log2(e)      in Q14
      75             :   uint16_t constMaxGain;
      76             :   uint16_t tmpU16, intPart, fracPart;
      77           0 :   const int16_t kCompRatio = 3;
      78           0 :   const int16_t kSoftLimiterLeft = 1;
      79           0 :   int16_t limiterOffset = 0;  // Limiter offset
      80             :   int16_t limiterIdx, limiterLvlX;
      81             :   int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
      82             :   int16_t i, tmp16, tmp16no1;
      83             :   int zeros, zerosScale;
      84             : 
      85             :   // Constants
      86             :   //    kLogE_1 = 23637; // log2(e)      in Q14
      87             :   //    kLog10 = 54426; // log2(10)     in Q14
      88             :   //    kLog10_2 = 49321; // 10*log10(2)  in Q14
      89             : 
      90             :   // Calculate maximum digital gain and zero gain level
      91           0 :   tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
      92           0 :   tmp16no1 = analogTarget - targetLevelDbfs;
      93           0 :   tmp16no1 +=
      94           0 :       WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
      95           0 :   maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
      96           0 :   tmp32no1 = maxGain * kCompRatio;
      97           0 :   zeroGainLvl = digCompGaindB;
      98           0 :   zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
      99           0 :                                            kCompRatio - 1);
     100           0 :   if ((digCompGaindB <= analogTarget) && (limiterEnable)) {
     101           0 :     zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
     102           0 :     limiterOffset = 0;
     103             :   }
     104             : 
     105             :   // Calculate the difference between maximum gain and gain at 0dB0v:
     106             :   //  diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
     107             :   //           = (compRatio-1)*digCompGaindB/compRatio
     108           0 :   tmp32no1 = digCompGaindB * (kCompRatio - 1);
     109           0 :   diffGain =
     110           0 :       WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
     111           0 :   if (diffGain < 0 || diffGain >= kGenFuncTableSize) {
     112           0 :     RTC_DCHECK(0);
     113             :     return -1;
     114             :   }
     115             : 
     116             :   // Calculate the limiter level and index:
     117             :   //  limiterLvlX = analogTarget - limiterOffset
     118             :   //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
     119           0 :   limiterLvlX = analogTarget - limiterOffset;
     120           0 :   limiterIdx = 2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX * (1 << 13),
     121             :                                              kLog10_2 / 2);
     122           0 :   tmp16no1 =
     123           0 :       WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
     124           0 :   limiterLvl = targetLevelDbfs + tmp16no1;
     125             : 
     126             :   // Calculate (through table lookup):
     127             :   //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
     128           0 :   constMaxGain = kGenFuncTable[diffGain];  // in Q8
     129             : 
     130             :   // Calculate a parameter used to approximate the fractional part of 2^x with a
     131             :   // piecewise linear function in Q14:
     132             :   //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
     133           0 :   constLinApprox = 22817;  // in Q14
     134             : 
     135             :   // Calculate a denominator used in the exponential part to convert from dB to
     136             :   // linear scale:
     137             :   //  den = 20*constMaxGain (in Q8)
     138           0 :   den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain);  // in Q8
     139             : 
     140           0 :   for (i = 0; i < 32; i++) {
     141             :     // Calculate scaled input level (compressor):
     142             :     //  inLevel =
     143             :     //  fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
     144           0 :     tmp16 = (int16_t)((kCompRatio - 1) * (i - 1));       // Q0
     145           0 :     tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1;  // Q14
     146           0 :     inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio);    // Q14
     147             : 
     148             :     // Calculate diffGain-inLevel, to map using the genFuncTable
     149           0 :     inLevel = (int32_t)diffGain * (1 << 14) - inLevel;  // Q14
     150             : 
     151             :     // Make calculations on abs(inLevel) and compensate for the sign afterwards.
     152           0 :     absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel);  // Q14
     153             : 
     154             :     // LUT with interpolation
     155           0 :     intPart = (uint16_t)(absInLevel >> 14);
     156           0 :     fracPart =
     157           0 :         (uint16_t)(absInLevel & 0x00003FFF);  // extract the fractional part
     158           0 :     tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart];  // Q8
     159           0 :     tmpU32no1 = tmpU16 * fracPart;                                 // Q22
     160           0 :     tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14;           // Q22
     161           0 :     logApprox = tmpU32no1 >> 8;                                    // Q14
     162             :     // Compensate for negative exponent using the relation:
     163             :     //  log2(1 + 2^-x) = log2(1 + 2^x) - x
     164           0 :     if (inLevel < 0) {
     165           0 :       zeros = WebRtcSpl_NormU32(absInLevel);
     166           0 :       zerosScale = 0;
     167           0 :       if (zeros < 15) {
     168             :         // Not enough space for multiplication
     169           0 :         tmpU32no2 = absInLevel >> (15 - zeros);                 // Q(zeros-1)
     170           0 :         tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1);  // Q(zeros+13)
     171           0 :         if (zeros < 9) {
     172           0 :           zerosScale = 9 - zeros;
     173           0 :           tmpU32no1 >>= zerosScale;  // Q(zeros+13)
     174             :         } else {
     175           0 :           tmpU32no2 >>= zeros - 9;  // Q22
     176             :         }
     177             :       } else {
     178           0 :         tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1);  // Q28
     179           0 :         tmpU32no2 >>= 6;                                         // Q22
     180             :       }
     181           0 :       logApprox = 0;
     182           0 :       if (tmpU32no2 < tmpU32no1) {
     183           0 :         logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale);  // Q14
     184             :       }
     185             :     }
     186           0 :     numFIX = (maxGain * constMaxGain) * (1 << 6);  // Q14
     187           0 :     numFIX -= (int32_t)logApprox * diffGain;       // Q14
     188             : 
     189             :     // Calculate ratio
     190             :     // Shift |numFIX| as much as possible.
     191             :     // Ensure we avoid wrap-around in |den| as well.
     192           0 :     if (numFIX > (den >> 8) || -numFIX > (den >> 8))  // |den| is Q8.
     193             :     {
     194           0 :       zeros = WebRtcSpl_NormW32(numFIX);
     195             :     } else {
     196           0 :       zeros = WebRtcSpl_NormW32(den) + 8;
     197             :     }
     198           0 :     numFIX *= 1 << zeros;  // Q(14+zeros)
     199             : 
     200             :     // Shift den so we end up in Qy1
     201           0 :     tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 9);  // Q(zeros - 1)
     202           0 :     y32 = numFIX / tmp32no1;  // in Q15
     203             :     // This is to do rounding in Q14.
     204           0 :     y32 = y32 >= 0 ? (y32 + 1) >> 1 : -((-y32 + 1) >> 1);
     205             : 
     206           0 :     if (limiterEnable && (i < limiterIdx)) {
     207           0 :       tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2);  // Q14
     208           0 :       tmp32 -= limiterLvl * (1 << 14);                 // Q14
     209           0 :       y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
     210             :     }
     211           0 :     if (y32 > 39000) {
     212           0 :       tmp32 = (y32 >> 1) * kLog10 + 4096;  // in Q27
     213           0 :       tmp32 >>= 13;                        // In Q14.
     214             :     } else {
     215           0 :       tmp32 = y32 * kLog10 + 8192;  // in Q28
     216           0 :       tmp32 >>= 14;                 // In Q14.
     217             :     }
     218           0 :     tmp32 += 16 << 14;  // in Q14 (Make sure final output is in Q16)
     219             : 
     220             :     // Calculate power
     221           0 :     if (tmp32 > 0) {
     222           0 :       intPart = (int16_t)(tmp32 >> 14);
     223           0 :       fracPart = (uint16_t)(tmp32 & 0x00003FFF);  // in Q14
     224           0 :       if ((fracPart >> 13) != 0) {
     225           0 :         tmp16 = (2 << 14) - constLinApprox;
     226           0 :         tmp32no2 = (1 << 14) - fracPart;
     227           0 :         tmp32no2 *= tmp16;
     228           0 :         tmp32no2 >>= 13;
     229           0 :         tmp32no2 = (1 << 14) - tmp32no2;
     230             :       } else {
     231           0 :         tmp16 = constLinApprox - (1 << 14);
     232           0 :         tmp32no2 = (fracPart * tmp16) >> 13;
     233             :       }
     234           0 :       fracPart = (uint16_t)tmp32no2;
     235           0 :       gainTable[i] =
     236           0 :           (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
     237             :     } else {
     238           0 :       gainTable[i] = 0;
     239             :     }
     240             :   }
     241             : 
     242           0 :   return 0;
     243             : }
     244             : 
     245           0 : int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
     246           0 :   if (agcMode == kAgcModeFixedDigital) {
     247             :     // start at minimum to find correct gain faster
     248           0 :     stt->capacitorSlow = 0;
     249             :   } else {
     250             :     // start out with 0 dB gain
     251           0 :     stt->capacitorSlow = 134217728;  // (int32_t)(0.125f * 32768.0f * 32768.0f);
     252             :   }
     253           0 :   stt->capacitorFast = 0;
     254           0 :   stt->gain = 65536;
     255           0 :   stt->gatePrevious = 0;
     256           0 :   stt->agcMode = agcMode;
     257             : #ifdef WEBRTC_AGC_DEBUG_DUMP
     258             :   stt->frameCounter = 0;
     259             : #endif
     260             : 
     261             :   // initialize VADs
     262           0 :   WebRtcAgc_InitVad(&stt->vadNearend);
     263           0 :   WebRtcAgc_InitVad(&stt->vadFarend);
     264             : 
     265           0 :   return 0;
     266             : }
     267             : 
     268           0 : int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
     269             :                                      const int16_t* in_far,
     270             :                                      size_t nrSamples) {
     271           0 :   RTC_DCHECK(stt);
     272             :   // VAD for far end
     273           0 :   WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
     274             : 
     275           0 :   return 0;
     276             : }
     277             : 
     278           0 : int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
     279             :                                  const int16_t* const* in_near,
     280             :                                  size_t num_bands,
     281             :                                  int16_t* const* out,
     282             :                                  uint32_t FS,
     283             :                                  int16_t lowlevelSignal) {
     284             :   // array for gains (one value per ms, incl start & end)
     285             :   int32_t gains[11];
     286             : 
     287             :   int32_t out_tmp, tmp32;
     288             :   int32_t env[10];
     289             :   int32_t max_nrg;
     290             :   int32_t cur_level;
     291             :   int32_t gain32, delta;
     292             :   int16_t logratio;
     293             :   int16_t lower_thr, upper_thr;
     294           0 :   int16_t zeros = 0, zeros_fast, frac = 0;
     295             :   int16_t decay;
     296             :   int16_t gate, gain_adj;
     297             :   int16_t k;
     298             :   size_t n, i, L;
     299             :   int16_t L2;  // samples/subframe
     300             : 
     301             :   // determine number of samples per ms
     302           0 :   if (FS == 8000) {
     303           0 :     L = 8;
     304           0 :     L2 = 3;
     305           0 :   } else if (FS == 16000 || FS == 32000 || FS == 48000) {
     306           0 :     L = 16;
     307           0 :     L2 = 4;
     308             :   } else {
     309           0 :     return -1;
     310             :   }
     311             : 
     312           0 :   for (i = 0; i < num_bands; ++i) {
     313           0 :     if (in_near[i] != out[i]) {
     314             :       // Only needed if they don't already point to the same place.
     315           0 :       memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
     316             :     }
     317             :   }
     318             :   // VAD for near end
     319           0 :   logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
     320             : 
     321             :   // Account for far end VAD
     322           0 :   if (stt->vadFarend.counter > 10) {
     323           0 :     tmp32 = 3 * logratio;
     324           0 :     logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
     325             :   }
     326             : 
     327             :   // Determine decay factor depending on VAD
     328             :   //  upper_thr = 1.0f;
     329             :   //  lower_thr = 0.25f;
     330           0 :   upper_thr = 1024;  // Q10
     331           0 :   lower_thr = 0;     // Q10
     332           0 :   if (logratio > upper_thr) {
     333             :     // decay = -2^17 / DecayTime;  ->  -65
     334           0 :     decay = -65;
     335           0 :   } else if (logratio < lower_thr) {
     336           0 :     decay = 0;
     337             :   } else {
     338             :     // decay = (int16_t)(((lower_thr - logratio)
     339             :     //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
     340             :     // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
     341           0 :     tmp32 = (lower_thr - logratio) * 65;
     342           0 :     decay = (int16_t)(tmp32 >> 10);
     343             :   }
     344             : 
     345             :   // adjust decay factor for long silence (detected as low standard deviation)
     346             :   // This is only done in the adaptive modes
     347           0 :   if (stt->agcMode != kAgcModeFixedDigital) {
     348           0 :     if (stt->vadNearend.stdLongTerm < 4000) {
     349           0 :       decay = 0;
     350           0 :     } else if (stt->vadNearend.stdLongTerm < 8096) {
     351             :       // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >>
     352             :       // 12);
     353           0 :       tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
     354           0 :       decay = (int16_t)(tmp32 >> 12);
     355             :     }
     356             : 
     357           0 :     if (lowlevelSignal != 0) {
     358           0 :       decay = 0;
     359             :     }
     360             :   }
     361             : #ifdef WEBRTC_AGC_DEBUG_DUMP
     362             :   stt->frameCounter++;
     363             :   fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100,
     364             :           logratio, decay, stt->vadNearend.stdLongTerm);
     365             : #endif
     366             :   // Find max amplitude per sub frame
     367             :   // iterate over sub frames
     368           0 :   for (k = 0; k < 10; k++) {
     369             :     // iterate over samples
     370           0 :     max_nrg = 0;
     371           0 :     for (n = 0; n < L; n++) {
     372           0 :       int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
     373           0 :       if (nrg > max_nrg) {
     374           0 :         max_nrg = nrg;
     375             :       }
     376             :     }
     377           0 :     env[k] = max_nrg;
     378             :   }
     379             : 
     380             :   // Calculate gain per sub frame
     381           0 :   gains[0] = stt->gain;
     382           0 :   for (k = 0; k < 10; k++) {
     383             :     // Fast envelope follower
     384             :     //  decay time = -131000 / -1000 = 131 (ms)
     385           0 :     stt->capacitorFast =
     386           0 :         AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
     387           0 :     if (env[k] > stt->capacitorFast) {
     388           0 :       stt->capacitorFast = env[k];
     389             :     }
     390             :     // Slow envelope follower
     391           0 :     if (env[k] > stt->capacitorSlow) {
     392             :       // increase capacitorSlow
     393           0 :       stt->capacitorSlow = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow),
     394             :                                            stt->capacitorSlow);
     395             :     } else {
     396             :       // decrease capacitorSlow
     397           0 :       stt->capacitorSlow =
     398           0 :           AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
     399             :     }
     400             : 
     401             :     // use maximum of both capacitors as current level
     402           0 :     if (stt->capacitorFast > stt->capacitorSlow) {
     403           0 :       cur_level = stt->capacitorFast;
     404             :     } else {
     405           0 :       cur_level = stt->capacitorSlow;
     406             :     }
     407             :     // Translate signal level into gain, using a piecewise linear approximation
     408             :     // find number of leading zeros
     409           0 :     zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
     410           0 :     if (cur_level == 0) {
     411           0 :       zeros = 31;
     412             :     }
     413           0 :     tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
     414           0 :     frac = (int16_t)(tmp32 >> 19);  // Q12.
     415           0 :     tmp32 = (stt->gainTable[zeros - 1] - stt->gainTable[zeros]) * frac;
     416           0 :     gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
     417             : #ifdef WEBRTC_AGC_DEBUG_DUMP
     418             :     if (k == 0) {
     419             :       fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level,
     420             :               stt->capacitorFast, stt->capacitorSlow, zeros);
     421             :     }
     422             : #endif
     423             :   }
     424             : 
     425             :   // Gate processing (lower gain during absence of speech)
     426           0 :   zeros = (zeros << 9) - (frac >> 3);
     427             :   // find number of leading zeros
     428           0 :   zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
     429           0 :   if (stt->capacitorFast == 0) {
     430           0 :     zeros_fast = 31;
     431             :   }
     432           0 :   tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
     433           0 :   zeros_fast <<= 9;
     434           0 :   zeros_fast -= (int16_t)(tmp32 >> 22);
     435             : 
     436           0 :   gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
     437             : 
     438           0 :   if (gate < 0) {
     439           0 :     stt->gatePrevious = 0;
     440             :   } else {
     441           0 :     tmp32 = stt->gatePrevious * 7;
     442           0 :     gate = (int16_t)((gate + tmp32) >> 3);
     443           0 :     stt->gatePrevious = gate;
     444             :   }
     445             :   // gate < 0     -> no gate
     446             :   // gate > 2500  -> max gate
     447           0 :   if (gate > 0) {
     448           0 :     if (gate < 2500) {
     449           0 :       gain_adj = (2500 - gate) >> 5;
     450             :     } else {
     451           0 :       gain_adj = 0;
     452             :     }
     453           0 :     for (k = 0; k < 10; k++) {
     454           0 :       if ((gains[k + 1] - stt->gainTable[0]) > 8388608) {
     455             :         // To prevent wraparound
     456           0 :         tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
     457           0 :         tmp32 *= 178 + gain_adj;
     458             :       } else {
     459           0 :         tmp32 = (gains[k + 1] - stt->gainTable[0]) * (178 + gain_adj);
     460           0 :         tmp32 >>= 8;
     461             :       }
     462           0 :       gains[k + 1] = stt->gainTable[0] + tmp32;
     463             :     }
     464             :   }
     465             : 
     466             :   // Limit gain to avoid overload distortion
     467           0 :   for (k = 0; k < 10; k++) {
     468             :     // To prevent wrap around
     469           0 :     zeros = 10;
     470           0 :     if (gains[k + 1] > 47453132) {
     471           0 :       zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
     472             :     }
     473           0 :     gain32 = (gains[k + 1] >> zeros) + 1;
     474           0 :     gain32 *= gain32;
     475             :     // check for overflow
     476           0 :     while (AGC_MUL32((env[k] >> 12) + 1, gain32) >
     477           0 :            WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10))) {
     478             :       // multiply by 253/256 ==> -0.1 dB
     479           0 :       if (gains[k + 1] > 8388607) {
     480             :         // Prevent wrap around
     481           0 :         gains[k + 1] = (gains[k + 1] / 256) * 253;
     482             :       } else {
     483           0 :         gains[k + 1] = (gains[k + 1] * 253) / 256;
     484             :       }
     485           0 :       gain32 = (gains[k + 1] >> zeros) + 1;
     486           0 :       gain32 *= gain32;
     487             :     }
     488             :   }
     489             :   // gain reductions should be done 1 ms earlier than gain increases
     490           0 :   for (k = 1; k < 10; k++) {
     491           0 :     if (gains[k] > gains[k + 1]) {
     492           0 :       gains[k] = gains[k + 1];
     493             :     }
     494             :   }
     495             :   // save start gain for next frame
     496           0 :   stt->gain = gains[10];
     497             : 
     498             :   // Apply gain
     499             :   // handle first sub frame separately
     500           0 :   delta = (gains[1] - gains[0]) * (1 << (4 - L2));
     501           0 :   gain32 = gains[0] * (1 << 4);
     502             :   // iterate over samples
     503           0 :   for (n = 0; n < L; n++) {
     504           0 :     for (i = 0; i < num_bands; ++i) {
     505           0 :       tmp32 = out[i][n] * ((gain32 + 127) >> 7);
     506           0 :       out_tmp = tmp32 >> 16;
     507           0 :       if (out_tmp > 4095) {
     508           0 :         out[i][n] = (int16_t)32767;
     509           0 :       } else if (out_tmp < -4096) {
     510           0 :         out[i][n] = (int16_t)-32768;
     511             :       } else {
     512           0 :         tmp32 = out[i][n] * (gain32 >> 4);
     513           0 :         out[i][n] = (int16_t)(tmp32 >> 16);
     514             :       }
     515             :     }
     516             :     //
     517             : 
     518           0 :     gain32 += delta;
     519             :   }
     520             :   // iterate over subframes
     521           0 :   for (k = 1; k < 10; k++) {
     522           0 :     delta = (gains[k + 1] - gains[k]) * (1 << (4 - L2));
     523           0 :     gain32 = gains[k] * (1 << 4);
     524             :     // iterate over samples
     525           0 :     for (n = 0; n < L; n++) {
     526           0 :       for (i = 0; i < num_bands; ++i) {
     527           0 :         tmp32 = out[i][k * L + n] * (gain32 >> 4);
     528           0 :         out[i][k * L + n] = (int16_t)(tmp32 >> 16);
     529             :       }
     530           0 :       gain32 += delta;
     531             :     }
     532             :   }
     533             : 
     534           0 :   return 0;
     535             : }
     536             : 
     537           0 : void WebRtcAgc_InitVad(AgcVad* state) {
     538             :   int16_t k;
     539             : 
     540           0 :   state->HPstate = 0;   // state of high pass filter
     541           0 :   state->logRatio = 0;  // log( P(active) / P(inactive) )
     542             :   // average input level (Q10)
     543           0 :   state->meanLongTerm = 15 << 10;
     544             : 
     545             :   // variance of input level (Q8)
     546           0 :   state->varianceLongTerm = 500 << 8;
     547             : 
     548           0 :   state->stdLongTerm = 0;  // standard deviation of input level in dB
     549             :   // short-term average input level (Q10)
     550           0 :   state->meanShortTerm = 15 << 10;
     551             : 
     552             :   // short-term variance of input level (Q8)
     553           0 :   state->varianceShortTerm = 500 << 8;
     554             : 
     555           0 :   state->stdShortTerm =
     556             :       0;               // short-term standard deviation of input level in dB
     557           0 :   state->counter = 3;  // counts updates
     558           0 :   for (k = 0; k < 8; k++) {
     559             :     // downsampling filter
     560           0 :     state->downState[k] = 0;
     561             :   }
     562           0 : }
     563             : 
     564           0 : int16_t WebRtcAgc_ProcessVad(AgcVad* state,      // (i) VAD state
     565             :                              const int16_t* in,  // (i) Speech signal
     566             :                              size_t nrSamples)   // (i) number of samples
     567             : {
     568             :   int32_t out, nrg, tmp32, tmp32b;
     569             :   uint16_t tmpU16;
     570             :   int16_t k, subfr, tmp16;
     571             :   int16_t buf1[8];
     572             :   int16_t buf2[4];
     573             :   int16_t HPstate;
     574             :   int16_t zeros, dB;
     575             : 
     576             :   // process in 10 sub frames of 1 ms (to save on memory)
     577           0 :   nrg = 0;
     578           0 :   HPstate = state->HPstate;
     579           0 :   for (subfr = 0; subfr < 10; subfr++) {
     580             :     // downsample to 4 kHz
     581           0 :     if (nrSamples == 160) {
     582           0 :       for (k = 0; k < 8; k++) {
     583           0 :         tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
     584           0 :         tmp32 >>= 1;
     585           0 :         buf1[k] = (int16_t)tmp32;
     586             :       }
     587           0 :       in += 16;
     588             : 
     589           0 :       WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
     590             :     } else {
     591           0 :       WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
     592           0 :       in += 8;
     593             :     }
     594             : 
     595             :     // high pass filter and compute energy
     596           0 :     for (k = 0; k < 4; k++) {
     597           0 :       out = buf2[k] + HPstate;
     598           0 :       tmp32 = 600 * out;
     599           0 :       HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
     600           0 :       nrg += (out * out) >> 6;
     601             :     }
     602             :   }
     603           0 :   state->HPstate = HPstate;
     604             : 
     605             :   // find number of leading zeros
     606           0 :   if (!(0xFFFF0000 & nrg)) {
     607           0 :     zeros = 16;
     608             :   } else {
     609           0 :     zeros = 0;
     610             :   }
     611           0 :   if (!(0xFF000000 & (nrg << zeros))) {
     612           0 :     zeros += 8;
     613             :   }
     614           0 :   if (!(0xF0000000 & (nrg << zeros))) {
     615           0 :     zeros += 4;
     616             :   }
     617           0 :   if (!(0xC0000000 & (nrg << zeros))) {
     618           0 :     zeros += 2;
     619             :   }
     620           0 :   if (!(0x80000000 & (nrg << zeros))) {
     621           0 :     zeros += 1;
     622             :   }
     623             : 
     624             :   // energy level (range {-32..30}) (Q10)
     625           0 :   dB = (15 - zeros) << 11;
     626             : 
     627             :   // Update statistics
     628             : 
     629           0 :   if (state->counter < kAvgDecayTime) {
     630             :     // decay time = AvgDecTime * 10 ms
     631           0 :     state->counter++;
     632             :   }
     633             : 
     634             :   // update short-term estimate of mean energy level (Q10)
     635           0 :   tmp32 = state->meanShortTerm * 15 + dB;
     636           0 :   state->meanShortTerm = (int16_t)(tmp32 >> 4);
     637             : 
     638             :   // update short-term estimate of variance in energy level (Q8)
     639           0 :   tmp32 = (dB * dB) >> 12;
     640           0 :   tmp32 += state->varianceShortTerm * 15;
     641           0 :   state->varianceShortTerm = tmp32 / 16;
     642             : 
     643             :   // update short-term estimate of standard deviation in energy level (Q10)
     644           0 :   tmp32 = state->meanShortTerm * state->meanShortTerm;
     645           0 :   tmp32 = (state->varianceShortTerm << 12) - tmp32;
     646           0 :   state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
     647             : 
     648             :   // update long-term estimate of mean energy level (Q10)
     649           0 :   tmp32 = state->meanLongTerm * state->counter + dB;
     650           0 :   state->meanLongTerm =
     651           0 :       WebRtcSpl_DivW32W16ResW16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
     652             : 
     653             :   // update long-term estimate of variance in energy level (Q8)
     654           0 :   tmp32 = (dB * dB) >> 12;
     655           0 :   tmp32 += state->varianceLongTerm * state->counter;
     656           0 :   state->varianceLongTerm =
     657           0 :       WebRtcSpl_DivW32W16(tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
     658             : 
     659             :   // update long-term estimate of standard deviation in energy level (Q10)
     660           0 :   tmp32 = state->meanLongTerm * state->meanLongTerm;
     661           0 :   tmp32 = (state->varianceLongTerm << 12) - tmp32;
     662           0 :   state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
     663             : 
     664             :   // update voice activity measure (Q10)
     665           0 :   tmp16 = 3 << 12;
     666             :   // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
     667             :   // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
     668             :   // was used, which did an intermediate cast to (int16_t), hence losing
     669             :   // significant bits. This cause logRatio to max out positive, rather than
     670             :   // negative. This is a bug, but has very little significance.
     671           0 :   tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
     672           0 :   tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
     673           0 :   tmpU16 = (13 << 12);
     674           0 :   tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
     675           0 :   tmp32 += tmp32b >> 10;
     676             : 
     677           0 :   state->logRatio = (int16_t)(tmp32 >> 6);
     678             : 
     679             :   // limit
     680           0 :   if (state->logRatio > 2048) {
     681           0 :     state->logRatio = 2048;
     682             :   }
     683           0 :   if (state->logRatio < -2048) {
     684           0 :     state->logRatio = -2048;
     685             :   }
     686             : 
     687           0 :   return state->logRatio;  // Q10
     688             : }

Generated by: LCOV version 1.13