LCOV - code coverage report
Current view: top level - media/webrtc/trunk/webrtc/system_wrappers/source - clock.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 66 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 23 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
       3             :  *
       4             :  *  Use of this source code is governed by a BSD-style license
       5             :  *  that can be found in the LICENSE file in the root of the source
       6             :  *  tree. An additional intellectual property rights grant can be found
       7             :  *  in the file PATENTS.  All contributing project authors may
       8             :  *  be found in the AUTHORS file in the root of the source tree.
       9             :  */
      10             : 
      11             : #include "webrtc/system_wrappers/include/clock.h"
      12             : 
      13             : #if defined(_WIN32)
      14             : // Windows needs to be included before mmsystem.h
      15             : #include "webrtc/base/win32.h"
      16             : #include <MMSystem.h>
      17             : #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC) || (defined WEBRTC_BSD))
      18             : #include <sys/time.h>
      19             : #include <time.h>
      20             : #endif
      21             : 
      22             : #include "webrtc/base/criticalsection.h"
      23             : #include "webrtc/base/timeutils.h"
      24             : #include "webrtc/system_wrappers/include/rw_lock_wrapper.h"
      25             : 
      26             : namespace webrtc {
      27             : 
      28             : const double kNtpFracPerMs = 4.294967296E6;
      29             : 
      30           0 : int64_t Clock::NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) {
      31           0 :   const double ntp_frac_ms = static_cast<double>(ntp_frac) / kNtpFracPerMs;
      32           0 :   return 1000 * static_cast<int64_t>(ntp_secs) +
      33           0 :       static_cast<int64_t>(ntp_frac_ms + 0.5);
      34             : }
      35             : 
      36           0 : class RealTimeClock : public Clock {
      37             :   // Return a timestamp in milliseconds relative to some arbitrary source; the
      38             :   // source is fixed for this clock.
      39           0 :   int64_t TimeInMilliseconds() const override {
      40           0 :     return rtc::TimeMillis();
      41             :   }
      42             : 
      43             :   // Return a timestamp in microseconds relative to some arbitrary source; the
      44             :   // source is fixed for this clock.
      45           0 :   int64_t TimeInMicroseconds() const override {
      46           0 :     return rtc::TimeMicros();
      47             :   }
      48             : 
      49             :   // Retrieve an NTP absolute timestamp in seconds and fractions of a second.
      50           0 :   void CurrentNtp(uint32_t& seconds, uint32_t& fractions) const override {
      51           0 :     timeval tv = CurrentTimeVal();
      52             :     double microseconds_in_seconds;
      53           0 :     Adjust(tv, &seconds, &microseconds_in_seconds);
      54           0 :     fractions = static_cast<uint32_t>(
      55           0 :         microseconds_in_seconds * kMagicNtpFractionalUnit + 0.5);
      56           0 :   }
      57             : 
      58             :   // Retrieve an NTP absolute timestamp in milliseconds.
      59           0 :   int64_t CurrentNtpInMilliseconds() const override {
      60           0 :     timeval tv = CurrentTimeVal();
      61             :     uint32_t seconds;
      62             :     double microseconds_in_seconds;
      63           0 :     Adjust(tv, &seconds, &microseconds_in_seconds);
      64           0 :     return 1000 * static_cast<int64_t>(seconds) +
      65           0 :         static_cast<int64_t>(1000.0 * microseconds_in_seconds + 0.5);
      66             :   }
      67             : 
      68             :  protected:
      69             :   virtual timeval CurrentTimeVal() const = 0;
      70             : 
      71           0 :   static void Adjust(const timeval& tv, uint32_t* adjusted_s,
      72             :                      double* adjusted_us_in_s) {
      73           0 :     *adjusted_s = tv.tv_sec + kNtpJan1970;
      74           0 :     *adjusted_us_in_s = tv.tv_usec / 1e6;
      75             : 
      76           0 :     if (*adjusted_us_in_s >= 1) {
      77           0 :       *adjusted_us_in_s -= 1;
      78           0 :       ++*adjusted_s;
      79           0 :     } else if (*adjusted_us_in_s < -1) {
      80           0 :       *adjusted_us_in_s += 1;
      81           0 :       --*adjusted_s;
      82             :     }
      83           0 :   }
      84             : };
      85             : 
      86             : #if defined(_WIN32)
      87             : // TODO(pbos): Consider modifying the implementation to synchronize itself
      88             : // against system time (update ref_point_, make it non-const) periodically to
      89             : // prevent clock drift.
      90             : class WindowsRealTimeClock : public RealTimeClock {
      91             :  public:
      92             :   WindowsRealTimeClock()
      93             :       : last_time_ms_(0),
      94             :         num_timer_wraps_(0),
      95             :         ref_point_(GetSystemReferencePoint()) {}
      96             : 
      97             :   virtual ~WindowsRealTimeClock() {}
      98             : 
      99             :  protected:
     100             :   struct ReferencePoint {
     101             :     FILETIME file_time;
     102             :     LARGE_INTEGER counter_ms;
     103             :   };
     104             : 
     105             :   timeval CurrentTimeVal() const override {
     106             :     const uint64_t FILETIME_1970 = 0x019db1ded53e8000;
     107             : 
     108             :     FILETIME StartTime;
     109             :     uint64_t Time;
     110             :     struct timeval tv;
     111             : 
     112             :     // We can't use query performance counter since they can change depending on
     113             :     // speed stepping.
     114             :     GetTime(&StartTime);
     115             : 
     116             :     Time = (((uint64_t) StartTime.dwHighDateTime) << 32) +
     117             :            (uint64_t) StartTime.dwLowDateTime;
     118             : 
     119             :     // Convert the hecto-nano second time to tv format.
     120             :     Time -= FILETIME_1970;
     121             : 
     122             :     tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000);
     123             :     tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10);
     124             :     return tv;
     125             :   }
     126             : 
     127             :   void GetTime(FILETIME* current_time) const {
     128             :     DWORD t;
     129             :     LARGE_INTEGER elapsed_ms;
     130             :     {
     131             :       rtc::CritScope lock(&crit_);
     132             :       // time MUST be fetched inside the critical section to avoid non-monotonic
     133             :       // last_time_ms_ values that'll register as incorrect wraparounds due to
     134             :       // concurrent calls to GetTime.
     135             :       t = timeGetTime();
     136             :       if (t < last_time_ms_)
     137             :         num_timer_wraps_++;
     138             :       last_time_ms_ = t;
     139             :       elapsed_ms.HighPart = num_timer_wraps_;
     140             :     }
     141             :     elapsed_ms.LowPart = t;
     142             :     elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart;
     143             : 
     144             :     // Translate to 100-nanoseconds intervals (FILETIME resolution)
     145             :     // and add to reference FILETIME to get current FILETIME.
     146             :     ULARGE_INTEGER filetime_ref_as_ul;
     147             :     filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime;
     148             :     filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime;
     149             :     filetime_ref_as_ul.QuadPart +=
     150             :         static_cast<ULONGLONG>((elapsed_ms.QuadPart) * 1000 * 10);
     151             : 
     152             :     // Copy to result
     153             :     current_time->dwHighDateTime = filetime_ref_as_ul.HighPart;
     154             :     current_time->dwLowDateTime = filetime_ref_as_ul.LowPart;
     155             :   }
     156             : 
     157             :   static ReferencePoint GetSystemReferencePoint() {
     158             :     ReferencePoint ref = {};
     159             :     FILETIME ft0 = {};
     160             :     FILETIME ft1 = {};
     161             :     // Spin waiting for a change in system time. As soon as this change happens,
     162             :     // get the matching call for timeGetTime() as soon as possible. This is
     163             :     // assumed to be the most accurate offset that we can get between
     164             :     // timeGetTime() and system time.
     165             : 
     166             :     // Set timer accuracy to 1 ms.
     167             :     timeBeginPeriod(1);
     168             :     GetSystemTimeAsFileTime(&ft0);
     169             :     do {
     170             :       GetSystemTimeAsFileTime(&ft1);
     171             : 
     172             :       ref.counter_ms.QuadPart = timeGetTime();
     173             :       Sleep(0);
     174             :     } while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&
     175             :              (ft0.dwLowDateTime == ft1.dwLowDateTime));
     176             :     ref.file_time = ft1;
     177             :     timeEndPeriod(1);
     178             :     return ref;
     179             :   }
     180             : 
     181             :   // mutable as time-accessing functions are const.
     182             :   rtc::CriticalSection crit_;
     183             :   mutable DWORD last_time_ms_;
     184             :   mutable LONG num_timer_wraps_;
     185             :   const ReferencePoint ref_point_;
     186             : };
     187             : 
     188             : #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC)) || (defined WEBRTC_BSD)
     189             : class UnixRealTimeClock : public RealTimeClock {
     190             :  public:
     191           0 :   UnixRealTimeClock() {}
     192             : 
     193           0 :   ~UnixRealTimeClock() override {}
     194             : 
     195             :  protected:
     196           0 :   timeval CurrentTimeVal() const override {
     197             :     struct timeval tv;
     198             :     struct timezone tz;
     199           0 :     tz.tz_minuteswest = 0;
     200           0 :     tz.tz_dsttime = 0;
     201           0 :     gettimeofday(&tv, &tz);
     202           0 :     return tv;
     203             :   }
     204             : };
     205             : #endif
     206             : 
     207             : #if defined(_WIN32)
     208             : static WindowsRealTimeClock* volatile g_shared_clock = nullptr;
     209             : #endif
     210           0 : Clock* Clock::GetRealTimeClock() {
     211             : #if defined(_WIN32)
     212             :   // This read relies on volatile read being atomic-load-acquire. This is
     213             :   // true in MSVC since at least 2005:
     214             :   // "A read of a volatile object (volatile read) has Acquire semantics"
     215             :   if (g_shared_clock != nullptr)
     216             :     return g_shared_clock;
     217             :   WindowsRealTimeClock* clock = new WindowsRealTimeClock;
     218             :   if (InterlockedCompareExchangePointer(
     219             :           reinterpret_cast<void* volatile*>(&g_shared_clock), clock, nullptr) !=
     220             :       nullptr) {
     221             :     // g_shared_clock was assigned while we constructed/tried to assign our
     222             :     // instance, delete our instance and use the existing one.
     223             :     delete clock;
     224             :   }
     225             :   return g_shared_clock;
     226             : #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_BSD) || (defined WEBRTC_MAC))
     227           0 :   static UnixRealTimeClock clock;
     228           0 :   return &clock;
     229             : #else
     230             :   return NULL;
     231             : #endif
     232             : }
     233             : 
     234           0 : SimulatedClock::SimulatedClock(int64_t initial_time_us)
     235           0 :     : time_us_(initial_time_us), lock_(RWLockWrapper::CreateRWLock()) {
     236           0 : }
     237             : 
     238           0 : SimulatedClock::~SimulatedClock() {
     239           0 : }
     240             : 
     241           0 : int64_t SimulatedClock::TimeInMilliseconds() const {
     242           0 :   ReadLockScoped synchronize(*lock_);
     243           0 :   return (time_us_ + 500) / 1000;
     244             : }
     245             : 
     246           0 : int64_t SimulatedClock::TimeInMicroseconds() const {
     247           0 :   ReadLockScoped synchronize(*lock_);
     248           0 :   return time_us_;
     249             : }
     250             : 
     251           0 : void SimulatedClock::CurrentNtp(uint32_t& seconds, uint32_t& fractions) const {
     252           0 :   int64_t now_ms = TimeInMilliseconds();
     253           0 :   seconds = (now_ms / 1000) + kNtpJan1970;
     254           0 :   fractions =
     255           0 :       static_cast<uint32_t>((now_ms % 1000) * kMagicNtpFractionalUnit / 1000);
     256           0 : }
     257             : 
     258           0 : int64_t SimulatedClock::CurrentNtpInMilliseconds() const {
     259           0 :   return TimeInMilliseconds() + 1000 * static_cast<int64_t>(kNtpJan1970);
     260             : }
     261             : 
     262           0 : void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) {
     263           0 :   AdvanceTimeMicroseconds(1000 * milliseconds);
     264           0 : }
     265             : 
     266           0 : void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) {
     267           0 :   WriteLockScoped synchronize(*lock_);
     268           0 :   time_us_ += microseconds;
     269           0 : }
     270             : 
     271             : };  // namespace webrtc

Generated by: LCOV version 1.13