Line data Source code
1 : /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 : /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 : /* This Source Code Form is subject to the terms of the Mozilla Public
4 : * License, v. 2.0. If a copy of the MPL was not distributed with this
5 : * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 :
7 : /* Provides checked integers, detecting integer overflow and divide-by-0. */
8 :
9 : #ifndef mozilla_CheckedInt_h
10 : #define mozilla_CheckedInt_h
11 :
12 : #include <stdint.h>
13 : #include "mozilla/Assertions.h"
14 : #include "mozilla/Attributes.h"
15 : #include "mozilla/IntegerTypeTraits.h"
16 :
17 : namespace mozilla {
18 :
19 : template<typename T> class CheckedInt;
20 :
21 : namespace detail {
22 :
23 : /*
24 : * Step 1: manually record supported types
25 : *
26 : * What's nontrivial here is that there are different families of integer
27 : * types: basic integer types and stdint types. It is merrily undefined which
28 : * types from one family may be just typedefs for a type from another family.
29 : *
30 : * For example, on GCC 4.6, aside from the basic integer types, the only other
31 : * type that isn't just a typedef for some of them, is int8_t.
32 : */
33 :
34 : struct UnsupportedType {};
35 :
36 : template<typename IntegerType>
37 : struct IsSupportedPass2
38 : {
39 : static const bool value = false;
40 : };
41 :
42 : template<typename IntegerType>
43 : struct IsSupported
44 : {
45 : static const bool value = IsSupportedPass2<IntegerType>::value;
46 : };
47 :
48 : template<>
49 : struct IsSupported<int8_t>
50 : { static const bool value = true; };
51 :
52 : template<>
53 : struct IsSupported<uint8_t>
54 : { static const bool value = true; };
55 :
56 : template<>
57 : struct IsSupported<int16_t>
58 : { static const bool value = true; };
59 :
60 : template<>
61 : struct IsSupported<uint16_t>
62 : { static const bool value = true; };
63 :
64 : template<>
65 : struct IsSupported<int32_t>
66 : { static const bool value = true; };
67 :
68 : template<>
69 : struct IsSupported<uint32_t>
70 : { static const bool value = true; };
71 :
72 : template<>
73 : struct IsSupported<int64_t>
74 : { static const bool value = true; };
75 :
76 : template<>
77 : struct IsSupported<uint64_t>
78 : { static const bool value = true; };
79 :
80 :
81 : template<>
82 : struct IsSupportedPass2<char>
83 : { static const bool value = true; };
84 :
85 : template<>
86 : struct IsSupportedPass2<signed char>
87 : { static const bool value = true; };
88 :
89 : template<>
90 : struct IsSupportedPass2<unsigned char>
91 : { static const bool value = true; };
92 :
93 : template<>
94 : struct IsSupportedPass2<short>
95 : { static const bool value = true; };
96 :
97 : template<>
98 : struct IsSupportedPass2<unsigned short>
99 : { static const bool value = true; };
100 :
101 : template<>
102 : struct IsSupportedPass2<int>
103 : { static const bool value = true; };
104 :
105 : template<>
106 : struct IsSupportedPass2<unsigned int>
107 : { static const bool value = true; };
108 :
109 : template<>
110 : struct IsSupportedPass2<long>
111 : { static const bool value = true; };
112 :
113 : template<>
114 : struct IsSupportedPass2<unsigned long>
115 : { static const bool value = true; };
116 :
117 : template<>
118 : struct IsSupportedPass2<long long>
119 : { static const bool value = true; };
120 :
121 : template<>
122 : struct IsSupportedPass2<unsigned long long>
123 : { static const bool value = true; };
124 :
125 : /*
126 : * Step 2: Implement the actual validity checks.
127 : *
128 : * Ideas taken from IntegerLib, code different.
129 : */
130 :
131 : template<typename IntegerType, size_t Size = sizeof(IntegerType)>
132 : struct TwiceBiggerType
133 : {
134 : typedef typename detail::StdintTypeForSizeAndSignedness<
135 : sizeof(IntegerType) * 2,
136 : IsSigned<IntegerType>::value
137 : >::Type Type;
138 : };
139 :
140 : template<typename IntegerType>
141 : struct TwiceBiggerType<IntegerType, 8>
142 : {
143 : typedef UnsupportedType Type;
144 : };
145 :
146 : template<typename T>
147 : inline bool
148 5534 : HasSignBit(T aX)
149 : {
150 : // In C++, right bit shifts on negative values is undefined by the standard.
151 : // Notice that signed-to-unsigned conversions are always well-defined in the
152 : // standard, as the value congruent modulo 2**n as expected. By contrast,
153 : // unsigned-to-signed is only well-defined if the value is representable.
154 : return bool(typename MakeUnsigned<T>::Type(aX) >>
155 5534 : PositionOfSignBit<T>::value);
156 : }
157 :
158 : // Bitwise ops may return a larger type, so it's good to use this inline
159 : // helper guaranteeing that the result is really of type T.
160 : template<typename T>
161 : inline T
162 280239 : BinaryComplement(T aX)
163 : {
164 280239 : return ~aX;
165 : }
166 :
167 : template<typename T,
168 : typename U,
169 : bool IsTSigned = IsSigned<T>::value,
170 : bool IsUSigned = IsSigned<U>::value>
171 : struct DoesRangeContainRange
172 : {
173 : };
174 :
175 : template<typename T, typename U, bool Signedness>
176 : struct DoesRangeContainRange<T, U, Signedness, Signedness>
177 : {
178 : static const bool value = sizeof(T) >= sizeof(U);
179 : };
180 :
181 : template<typename T, typename U>
182 : struct DoesRangeContainRange<T, U, true, false>
183 : {
184 : static const bool value = sizeof(T) > sizeof(U);
185 : };
186 :
187 : template<typename T, typename U>
188 : struct DoesRangeContainRange<T, U, false, true>
189 : {
190 : static const bool value = false;
191 : };
192 :
193 : template<typename T,
194 : typename U,
195 : bool IsTSigned = IsSigned<T>::value,
196 : bool IsUSigned = IsSigned<U>::value,
197 : bool DoesTRangeContainURange = DoesRangeContainRange<T, U>::value>
198 : struct IsInRangeImpl {};
199 :
200 : template<typename T, typename U, bool IsTSigned, bool IsUSigned>
201 : struct IsInRangeImpl<T, U, IsTSigned, IsUSigned, true>
202 : {
203 760656 : static bool constexpr run(U)
204 : {
205 760656 : return true;
206 : }
207 : };
208 :
209 : template<typename T, typename U>
210 : struct IsInRangeImpl<T, U, true, true, false>
211 : {
212 573 : static bool constexpr run(U aX)
213 : {
214 573 : return aX <= MaxValue<T>::value && aX >= MinValue<T>::value;
215 : }
216 : };
217 :
218 : template<typename T, typename U>
219 : struct IsInRangeImpl<T, U, false, false, false>
220 : {
221 160162 : static bool constexpr run(U aX)
222 : {
223 160162 : return aX <= MaxValue<T>::value;
224 : }
225 : };
226 :
227 : template<typename T, typename U>
228 : struct IsInRangeImpl<T, U, true, false, false>
229 : {
230 275 : static bool constexpr run(U aX)
231 : {
232 275 : return sizeof(T) > sizeof(U) || aX <= U(MaxValue<T>::value);
233 : }
234 : };
235 :
236 : template<typename T, typename U>
237 : struct IsInRangeImpl<T, U, false, true, false>
238 : {
239 77673 : static bool constexpr run(U aX)
240 : {
241 : return sizeof(T) >= sizeof(U)
242 : ? aX >= 0
243 77673 : : aX >= 0 && aX <= U(MaxValue<T>::value);
244 : }
245 : };
246 :
247 : template<typename T, typename U>
248 : inline constexpr bool
249 999338 : IsInRange(U aX)
250 : {
251 999338 : return IsInRangeImpl<T, U>::run(aX);
252 : }
253 :
254 : template<typename T>
255 : inline bool
256 279923 : IsAddValid(T aX, T aY)
257 : {
258 : // Addition is valid if the sign of aX+aY is equal to either that of aX or
259 : // that of aY. Since the value of aX+aY is undefined if we have a signed
260 : // type, we compute it using the unsigned type of the same size. Beware!
261 : // These bitwise operations can return a larger integer type, if T was a
262 : // small type like int8_t, so we explicitly cast to T.
263 :
264 279923 : typename MakeUnsigned<T>::Type ux = aX;
265 279923 : typename MakeUnsigned<T>::Type uy = aY;
266 279923 : typename MakeUnsigned<T>::Type result = ux + uy;
267 : return IsSigned<T>::value
268 5218 : ? HasSignBit(BinaryComplement(T((result ^ aX) & (result ^ aY))))
269 279923 : : BinaryComplement(aX) >= aY;
270 : }
271 :
272 : template<typename T>
273 : inline bool
274 228077 : IsSubValid(T aX, T aY)
275 : {
276 : // Subtraction is valid if either aX and aY have same sign, or aX-aY and aX
277 : // have same sign. Since the value of aX-aY is undefined if we have a signed
278 : // type, we compute it using the unsigned type of the same size.
279 228077 : typename MakeUnsigned<T>::Type ux = aX;
280 228077 : typename MakeUnsigned<T>::Type uy = aY;
281 228077 : typename MakeUnsigned<T>::Type result = ux - uy;
282 :
283 : return IsSigned<T>::value
284 316 : ? HasSignBit(BinaryComplement(T((result ^ aX) & (aX ^ aY))))
285 228077 : : aX >= aY;
286 : }
287 :
288 : template<typename T,
289 : bool IsTSigned = IsSigned<T>::value,
290 : bool TwiceBiggerTypeIsSupported =
291 : IsSupported<typename TwiceBiggerType<T>::Type>::value>
292 : struct IsMulValidImpl {};
293 :
294 : template<typename T, bool IsTSigned>
295 : struct IsMulValidImpl<T, IsTSigned, true>
296 : {
297 79597 : static bool run(T aX, T aY)
298 : {
299 : typedef typename TwiceBiggerType<T>::Type TwiceBiggerType;
300 79597 : TwiceBiggerType product = TwiceBiggerType(aX) * TwiceBiggerType(aY);
301 79597 : return IsInRange<T>(product);
302 : }
303 : };
304 :
305 : template<typename T>
306 : struct IsMulValidImpl<T, true, false>
307 : {
308 0 : static bool run(T aX, T aY)
309 : {
310 0 : const T max = MaxValue<T>::value;
311 0 : const T min = MinValue<T>::value;
312 :
313 0 : if (aX == 0 || aY == 0) {
314 0 : return true;
315 : }
316 0 : if (aX > 0) {
317 : return aY > 0
318 0 : ? aX <= max / aY
319 0 : : aY >= min / aX;
320 : }
321 :
322 : // If we reach this point, we know that aX < 0.
323 : return aY > 0
324 0 : ? aX >= min / aY
325 0 : : aY >= max / aX;
326 : }
327 : };
328 :
329 : template<typename T>
330 : struct IsMulValidImpl<T, false, false>
331 : {
332 13381 : static bool run(T aX, T aY)
333 : {
334 13381 : return aY == 0 || aX <= MaxValue<T>::value / aY;
335 : }
336 : };
337 :
338 : template<typename T>
339 : inline bool
340 92978 : IsMulValid(T aX, T aY)
341 : {
342 92978 : return IsMulValidImpl<T>::run(aX, aY);
343 : }
344 :
345 : template<typename T>
346 : inline bool
347 5 : IsDivValid(T aX, T aY)
348 : {
349 : // Keep in mind that in the signed case, min/-1 is invalid because
350 : // abs(min)>max.
351 10 : return aY != 0 &&
352 5 : !(IsSigned<T>::value && aX == MinValue<T>::value && aY == T(-1));
353 : }
354 :
355 : template<typename T, bool IsTSigned = IsSigned<T>::value>
356 : struct IsModValidImpl;
357 :
358 : template<typename T>
359 : inline bool
360 : IsModValid(T aX, T aY)
361 : {
362 : return IsModValidImpl<T>::run(aX, aY);
363 : }
364 :
365 : /*
366 : * Mod is pretty simple.
367 : * For now, let's just use the ANSI C definition:
368 : * If aX or aY are negative, the results are implementation defined.
369 : * Consider these invalid.
370 : * Undefined for aY=0.
371 : * The result will never exceed either aX or aY.
372 : *
373 : * Checking that aX>=0 is a warning when T is unsigned.
374 : */
375 :
376 : template<typename T>
377 : struct IsModValidImpl<T, false>
378 : {
379 : static inline bool run(T aX, T aY)
380 : {
381 : return aY >= 1;
382 : }
383 : };
384 :
385 : template<typename T>
386 : struct IsModValidImpl<T, true>
387 : {
388 : static inline bool run(T aX, T aY)
389 : {
390 : if (aX < 0) {
391 : return false;
392 : }
393 : return aY >= 1;
394 : }
395 : };
396 :
397 : template<typename T, bool IsSigned = IsSigned<T>::value>
398 : struct NegateImpl;
399 :
400 : template<typename T>
401 : struct NegateImpl<T, false>
402 : {
403 : static CheckedInt<T> negate(const CheckedInt<T>& aVal)
404 : {
405 : // Handle negation separately for signed/unsigned, for simpler code and to
406 : // avoid an MSVC warning negating an unsigned value.
407 : return CheckedInt<T>(0, aVal.isValid() && aVal.mValue == 0);
408 : }
409 : };
410 :
411 : template<typename T>
412 : struct NegateImpl<T, true>
413 : {
414 0 : static CheckedInt<T> negate(const CheckedInt<T>& aVal)
415 : {
416 : // Watch out for the min-value, which (with twos-complement) can't be
417 : // negated as -min-value is then (max-value + 1).
418 0 : if (!aVal.isValid() || aVal.mValue == MinValue<T>::value) {
419 0 : return CheckedInt<T>(aVal.mValue, false);
420 : }
421 0 : return CheckedInt<T>(-aVal.mValue, true);
422 : }
423 : };
424 :
425 : } // namespace detail
426 :
427 :
428 : /*
429 : * Step 3: Now define the CheckedInt class.
430 : */
431 :
432 : /**
433 : * @class CheckedInt
434 : * @brief Integer wrapper class checking for integer overflow and other errors
435 : * @param T the integer type to wrap. Can be any type among the following:
436 : * - any basic integer type such as |int|
437 : * - any stdint type such as |int8_t|
438 : *
439 : * This class implements guarded integer arithmetic. Do a computation, check
440 : * that isValid() returns true, you then have a guarantee that no problem, such
441 : * as integer overflow, happened during this computation, and you can call
442 : * value() to get the plain integer value.
443 : *
444 : * The arithmetic operators in this class are guaranteed not to raise a signal
445 : * (e.g. in case of a division by zero).
446 : *
447 : * For example, suppose that you want to implement a function that computes
448 : * (aX+aY)/aZ, that doesn't crash if aZ==0, and that reports on error (divide by
449 : * zero or integer overflow). You could code it as follows:
450 : @code
451 : bool computeXPlusYOverZ(int aX, int aY, int aZ, int* aResult)
452 : {
453 : CheckedInt<int> checkedResult = (CheckedInt<int>(aX) + aY) / aZ;
454 : if (checkedResult.isValid()) {
455 : *aResult = checkedResult.value();
456 : return true;
457 : } else {
458 : return false;
459 : }
460 : }
461 : @endcode
462 : *
463 : * Implicit conversion from plain integers to checked integers is allowed. The
464 : * plain integer is checked to be in range before being casted to the
465 : * destination type. This means that the following lines all compile, and the
466 : * resulting CheckedInts are correctly detected as valid or invalid:
467 : * @code
468 : // 1 is of type int, is found to be in range for uint8_t, x is valid
469 : CheckedInt<uint8_t> x(1);
470 : // -1 is of type int, is found not to be in range for uint8_t, x is invalid
471 : CheckedInt<uint8_t> x(-1);
472 : // -1 is of type int, is found to be in range for int8_t, x is valid
473 : CheckedInt<int8_t> x(-1);
474 : // 1000 is of type int16_t, is found not to be in range for int8_t,
475 : // x is invalid
476 : CheckedInt<int8_t> x(int16_t(1000));
477 : // 3123456789 is of type uint32_t, is found not to be in range for int32_t,
478 : // x is invalid
479 : CheckedInt<int32_t> x(uint32_t(3123456789));
480 : * @endcode
481 : * Implicit conversion from
482 : * checked integers to plain integers is not allowed. As shown in the
483 : * above example, to get the value of a checked integer as a normal integer,
484 : * call value().
485 : *
486 : * Arithmetic operations between checked and plain integers is allowed; the
487 : * result type is the type of the checked integer.
488 : *
489 : * Checked integers of different types cannot be used in the same arithmetic
490 : * expression.
491 : *
492 : * There are convenience typedefs for all stdint types, of the following form
493 : * (these are just 2 examples):
494 : @code
495 : typedef CheckedInt<int32_t> CheckedInt32;
496 : typedef CheckedInt<uint16_t> CheckedUint16;
497 : @endcode
498 : */
499 : template<typename T>
500 : class CheckedInt
501 : {
502 : protected:
503 : T mValue;
504 : bool mIsValid;
505 :
506 : template<typename U>
507 600970 : CheckedInt(U aValue, bool aIsValid) : mValue(aValue), mIsValid(aIsValid)
508 : {
509 : static_assert(detail::IsSupported<T>::value &&
510 : detail::IsSupported<U>::value,
511 : "This type is not supported by CheckedInt");
512 600970 : }
513 :
514 : friend struct detail::NegateImpl<T>;
515 :
516 : public:
517 : /**
518 : * Constructs a checked integer with given @a value. The checked integer is
519 : * initialized as valid or invalid depending on whether the @a value
520 : * is in range.
521 : *
522 : * This constructor is not explicit. Instead, the type of its argument is a
523 : * separate template parameter, ensuring that no conversion is performed
524 : * before this constructor is actually called. As explained in the above
525 : * documentation for class CheckedInt, this constructor checks that its
526 : * argument is valid.
527 : */
528 : template<typename U>
529 919745 : MOZ_IMPLICIT constexpr CheckedInt(U aValue) MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT
530 : : mValue(T(aValue)),
531 919745 : mIsValid(detail::IsInRange<T>(aValue))
532 : {
533 : static_assert(detail::IsSupported<T>::value &&
534 : detail::IsSupported<U>::value,
535 : "This type is not supported by CheckedInt");
536 919750 : }
537 :
538 : template<typename U>
539 : friend class CheckedInt;
540 :
541 : template<typename U>
542 0 : CheckedInt<U> toChecked() const
543 : {
544 0 : CheckedInt<U> ret(mValue);
545 0 : ret.mIsValid = ret.mIsValid && mIsValid;
546 0 : return ret;
547 : }
548 :
549 : /** Constructs a valid checked integer with initial value 0 */
550 0 : constexpr CheckedInt() : mValue(0), mIsValid(true)
551 : {
552 : static_assert(detail::IsSupported<T>::value,
553 : "This type is not supported by CheckedInt");
554 0 : }
555 :
556 : /** @returns the actual value */
557 641402 : T value() const
558 : {
559 641402 : MOZ_ASSERT(mIsValid, "Invalid checked integer (division by zero or integer overflow)");
560 641402 : return mValue;
561 : }
562 :
563 : /**
564 : * @returns true if the checked integer is valid, i.e. is not the result
565 : * of an invalid operation or of an operation involving an invalid checked
566 : * integer
567 : */
568 311647 : bool isValid() const
569 : {
570 311647 : return mIsValid;
571 : }
572 :
573 : template<typename U>
574 : friend CheckedInt<U> operator +(const CheckedInt<U>& aLhs,
575 : const CheckedInt<U>& aRhs);
576 : template<typename U>
577 : CheckedInt& operator +=(U aRhs);
578 : CheckedInt& operator +=(const CheckedInt<T>& aRhs);
579 :
580 : template<typename U>
581 : friend CheckedInt<U> operator -(const CheckedInt<U>& aLhs,
582 : const CheckedInt<U>& aRhs);
583 : template<typename U>
584 : CheckedInt& operator -=(U aRhs);
585 : CheckedInt& operator -=(const CheckedInt<T>& aRhs);
586 :
587 : template<typename U>
588 : friend CheckedInt<U> operator *(const CheckedInt<U>& aLhs,
589 : const CheckedInt<U>& aRhs);
590 : template<typename U>
591 : CheckedInt& operator *=(U aRhs);
592 : CheckedInt& operator *=(const CheckedInt<T>& aRhs);
593 :
594 : template<typename U>
595 : friend CheckedInt<U> operator /(const CheckedInt<U>& aLhs,
596 : const CheckedInt<U>& aRhs);
597 : template<typename U>
598 : CheckedInt& operator /=(U aRhs);
599 : CheckedInt& operator /=(const CheckedInt<T>& aRhs);
600 :
601 : template<typename U>
602 : friend CheckedInt<U> operator %(const CheckedInt<U>& aLhs,
603 : const CheckedInt<U>& aRhs);
604 : template<typename U>
605 : CheckedInt& operator %=(U aRhs);
606 : CheckedInt& operator %=(const CheckedInt<T>& aRhs);
607 :
608 0 : CheckedInt operator -() const
609 : {
610 0 : return detail::NegateImpl<T>::negate(*this);
611 : }
612 :
613 : /**
614 : * @returns true if the left and right hand sides are valid
615 : * and have the same value.
616 : *
617 : * Note that these semantics are the reason why we don't offer
618 : * a operator!=. Indeed, we'd want to have a!=b be equivalent to !(a==b)
619 : * but that would mean that whenever a or b is invalid, a!=b
620 : * is always true, which would be very confusing.
621 : *
622 : * For similar reasons, operators <, >, <=, >= would be very tricky to
623 : * specify, so we just avoid offering them.
624 : *
625 : * Notice that these == semantics are made more reasonable by these facts:
626 : * 1. a==b implies equality at the raw data level
627 : * (the converse is false, as a==b is never true among invalids)
628 : * 2. This is similar to the behavior of IEEE floats, where a==b
629 : * means that a and b have the same value *and* neither is NaN.
630 : */
631 0 : bool operator ==(const CheckedInt& aOther) const
632 : {
633 0 : return mIsValid && aOther.mIsValid && mValue == aOther.mValue;
634 : }
635 :
636 : /** prefix ++ */
637 0 : CheckedInt& operator++()
638 : {
639 0 : *this += 1;
640 0 : return *this;
641 : }
642 :
643 : /** postfix ++ */
644 0 : CheckedInt operator++(int)
645 : {
646 0 : CheckedInt tmp = *this;
647 0 : *this += 1;
648 0 : return tmp;
649 : }
650 :
651 : /** prefix -- */
652 : CheckedInt& operator--()
653 : {
654 : *this -= 1;
655 : return *this;
656 : }
657 :
658 : /** postfix -- */
659 : CheckedInt operator--(int)
660 : {
661 : CheckedInt tmp = *this;
662 : *this -= 1;
663 : return tmp;
664 : }
665 :
666 : private:
667 : /**
668 : * The !=, <, <=, >, >= operators are disabled:
669 : * see the comment on operator==.
670 : */
671 : template<typename U> bool operator !=(U aOther) const = delete;
672 : template<typename U> bool operator < (U aOther) const = delete;
673 : template<typename U> bool operator <=(U aOther) const = delete;
674 : template<typename U> bool operator > (U aOther) const = delete;
675 : template<typename U> bool operator >=(U aOther) const = delete;
676 : };
677 :
678 : #define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
679 : template<typename T> \
680 : inline CheckedInt<T> \
681 : operator OP(const CheckedInt<T>& aLhs, const CheckedInt<T>& aRhs) \
682 : { \
683 : if (!detail::Is##NAME##Valid(aLhs.mValue, aRhs.mValue)) { \
684 : return CheckedInt<T>(0, false); \
685 : } \
686 : return CheckedInt<T>(aLhs.mValue OP aRhs.mValue, \
687 : aLhs.mIsValid && aRhs.mIsValid); \
688 : }
689 :
690 279923 : MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Add, +)
691 228077 : MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Sub, -)
692 92978 : MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mul, *)
693 5 : MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Div, /)
694 : MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mod, %)
695 :
696 : #undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR
697 :
698 : // Implement castToCheckedInt<T>(x), making sure that
699 : // - it allows x to be either a CheckedInt<T> or any integer type
700 : // that can be casted to T
701 : // - if x is already a CheckedInt<T>, we just return a reference to it,
702 : // instead of copying it (optimization)
703 :
704 : namespace detail {
705 :
706 : template<typename T, typename U>
707 : struct CastToCheckedIntImpl
708 : {
709 : typedef CheckedInt<T> ReturnType;
710 600275 : static CheckedInt<T> run(U aU) { return aU; }
711 : };
712 :
713 : template<typename T>
714 : struct CastToCheckedIntImpl<T, CheckedInt<T> >
715 : {
716 : typedef const CheckedInt<T>& ReturnType;
717 : static const CheckedInt<T>& run(const CheckedInt<T>& aU) { return aU; }
718 : };
719 :
720 : } // namespace detail
721 :
722 : template<typename T, typename U>
723 : inline typename detail::CastToCheckedIntImpl<T, U>::ReturnType
724 600275 : castToCheckedInt(U aU)
725 : {
726 : static_assert(detail::IsSupported<T>::value &&
727 : detail::IsSupported<U>::value,
728 : "This type is not supported by CheckedInt");
729 600275 : return detail::CastToCheckedIntImpl<T, U>::run(aU);
730 : }
731 :
732 : #define MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
733 : template<typename T> \
734 : template<typename U> \
735 : CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U aRhs) \
736 : { \
737 : *this = *this OP castToCheckedInt<T>(aRhs); \
738 : return *this; \
739 : } \
740 : template<typename T> \
741 : CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(const CheckedInt<T>& aRhs) \
742 : { \
743 : *this = *this OP aRhs; \
744 : return *this; \
745 : } \
746 : template<typename T, typename U> \
747 : inline CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, U aRhs) \
748 : { \
749 : return aLhs OP castToCheckedInt<T>(aRhs); \
750 : } \
751 : template<typename T, typename U> \
752 : inline CheckedInt<T> operator OP(U aLhs, const CheckedInt<T>& aRhs) \
753 : { \
754 : return castToCheckedInt<T>(aLhs) OP aRhs; \
755 : }
756 :
757 279787 : MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
758 92724 : MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
759 227761 : MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
760 5 : MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
761 : MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(%, %=)
762 :
763 : #undef MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS
764 :
765 : template<typename T, typename U>
766 : inline bool
767 0 : operator ==(const CheckedInt<T>& aLhs, U aRhs)
768 : {
769 0 : return aLhs == castToCheckedInt<T>(aRhs);
770 : }
771 :
772 : template<typename T, typename U>
773 : inline bool
774 : operator ==(U aLhs, const CheckedInt<T>& aRhs)
775 : {
776 : return castToCheckedInt<T>(aLhs) == aRhs;
777 : }
778 :
779 : // Convenience typedefs.
780 : typedef CheckedInt<int8_t> CheckedInt8;
781 : typedef CheckedInt<uint8_t> CheckedUint8;
782 : typedef CheckedInt<int16_t> CheckedInt16;
783 : typedef CheckedInt<uint16_t> CheckedUint16;
784 : typedef CheckedInt<int32_t> CheckedInt32;
785 : typedef CheckedInt<uint32_t> CheckedUint32;
786 : typedef CheckedInt<int64_t> CheckedInt64;
787 : typedef CheckedInt<uint64_t> CheckedUint64;
788 :
789 : } // namespace mozilla
790 :
791 : #endif /* mozilla_CheckedInt_h */
|