LCOV - code coverage report
Current view: top level - mfbt/double-conversion/source - bignum-dtoa.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 188 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 11 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Copyright 2010 the V8 project authors. All rights reserved.
       2             : // Redistribution and use in source and binary forms, with or without
       3             : // modification, are permitted provided that the following conditions are
       4             : // met:
       5             : //
       6             : //     * Redistributions of source code must retain the above copyright
       7             : //       notice, this list of conditions and the following disclaimer.
       8             : //     * Redistributions in binary form must reproduce the above
       9             : //       copyright notice, this list of conditions and the following
      10             : //       disclaimer in the documentation and/or other materials provided
      11             : //       with the distribution.
      12             : //     * Neither the name of Google Inc. nor the names of its
      13             : //       contributors may be used to endorse or promote products derived
      14             : //       from this software without specific prior written permission.
      15             : //
      16             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      17             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      18             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      19             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      20             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      21             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      22             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      23             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      24             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      25             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      26             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      27             : 
      28             : #include <math.h>
      29             : 
      30             : #include "bignum-dtoa.h"
      31             : 
      32             : #include "bignum.h"
      33             : #include "ieee.h"
      34             : 
      35             : namespace double_conversion {
      36             : 
      37           0 : static int NormalizedExponent(uint64_t significand, int exponent) {
      38           0 :   ASSERT(significand != 0);
      39           0 :   while ((significand & Double::kHiddenBit) == 0) {
      40           0 :     significand = significand << 1;
      41           0 :     exponent = exponent - 1;
      42             :   }
      43           0 :   return exponent;
      44             : }
      45             : 
      46             : 
      47             : // Forward declarations:
      48             : // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
      49             : static int EstimatePower(int exponent);
      50             : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
      51             : // and denominator.
      52             : static void InitialScaledStartValues(uint64_t significand,
      53             :                                      int exponent,
      54             :                                      bool lower_boundary_is_closer,
      55             :                                      int estimated_power,
      56             :                                      bool need_boundary_deltas,
      57             :                                      Bignum* numerator,
      58             :                                      Bignum* denominator,
      59             :                                      Bignum* delta_minus,
      60             :                                      Bignum* delta_plus);
      61             : // Multiplies numerator/denominator so that its values lies in the range 1-10.
      62             : // Returns decimal_point s.t.
      63             : //  v = numerator'/denominator' * 10^(decimal_point-1)
      64             : //     where numerator' and denominator' are the values of numerator and
      65             : //     denominator after the call to this function.
      66             : static void FixupMultiply10(int estimated_power, bool is_even,
      67             :                             int* decimal_point,
      68             :                             Bignum* numerator, Bignum* denominator,
      69             :                             Bignum* delta_minus, Bignum* delta_plus);
      70             : // Generates digits from the left to the right and stops when the generated
      71             : // digits yield the shortest decimal representation of v.
      72             : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
      73             :                                    Bignum* delta_minus, Bignum* delta_plus,
      74             :                                    bool is_even,
      75             :                                    Vector<char> buffer, int* length);
      76             : // Generates 'requested_digits' after the decimal point.
      77             : static void BignumToFixed(int requested_digits, int* decimal_point,
      78             :                           Bignum* numerator, Bignum* denominator,
      79             :                           Vector<char>(buffer), int* length);
      80             : // Generates 'count' digits of numerator/denominator.
      81             : // Once 'count' digits have been produced rounds the result depending on the
      82             : // remainder (remainders of exactly .5 round upwards). Might update the
      83             : // decimal_point when rounding up (for example for 0.9999).
      84             : static void GenerateCountedDigits(int count, int* decimal_point,
      85             :                                   Bignum* numerator, Bignum* denominator,
      86             :                                   Vector<char>(buffer), int* length);
      87             : 
      88             : 
      89           0 : void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
      90             :                 Vector<char> buffer, int* length, int* decimal_point) {
      91           0 :   ASSERT(v > 0);
      92           0 :   ASSERT(!Double(v).IsSpecial());
      93             :   uint64_t significand;
      94             :   int exponent;
      95             :   bool lower_boundary_is_closer;
      96           0 :   if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
      97           0 :     float f = static_cast<float>(v);
      98           0 :     ASSERT(f == v);
      99           0 :     significand = Single(f).Significand();
     100           0 :     exponent = Single(f).Exponent();
     101           0 :     lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
     102             :   } else {
     103           0 :     significand = Double(v).Significand();
     104           0 :     exponent = Double(v).Exponent();
     105           0 :     lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
     106             :   }
     107             :   bool need_boundary_deltas =
     108           0 :       (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
     109             : 
     110           0 :   bool is_even = (significand & 1) == 0;
     111           0 :   int normalized_exponent = NormalizedExponent(significand, exponent);
     112             :   // estimated_power might be too low by 1.
     113           0 :   int estimated_power = EstimatePower(normalized_exponent);
     114             : 
     115             :   // Shortcut for Fixed.
     116             :   // The requested digits correspond to the digits after the point. If the
     117             :   // number is much too small, then there is no need in trying to get any
     118             :   // digits.
     119           0 :   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
     120           0 :     buffer[0] = '\0';
     121           0 :     *length = 0;
     122             :     // Set decimal-point to -requested_digits. This is what Gay does.
     123             :     // Note that it should not have any effect anyways since the string is
     124             :     // empty.
     125           0 :     *decimal_point = -requested_digits;
     126           0 :     return;
     127             :   }
     128             : 
     129           0 :   Bignum numerator;
     130           0 :   Bignum denominator;
     131           0 :   Bignum delta_minus;
     132           0 :   Bignum delta_plus;
     133             :   // Make sure the bignum can grow large enough. The smallest double equals
     134             :   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
     135             :   // The maximum double is 1.7976931348623157e308 which needs fewer than
     136             :   // 308*4 binary digits.
     137             :   ASSERT(Bignum::kMaxSignificantBits >= 324*4);
     138           0 :   InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
     139             :                            estimated_power, need_boundary_deltas,
     140             :                            &numerator, &denominator,
     141           0 :                            &delta_minus, &delta_plus);
     142             :   // We now have v = (numerator / denominator) * 10^estimated_power.
     143           0 :   FixupMultiply10(estimated_power, is_even, decimal_point,
     144             :                   &numerator, &denominator,
     145           0 :                   &delta_minus, &delta_plus);
     146             :   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
     147             :   //  1 <= (numerator + delta_plus) / denominator < 10
     148           0 :   switch (mode) {
     149             :     case BIGNUM_DTOA_SHORTEST:
     150             :     case BIGNUM_DTOA_SHORTEST_SINGLE:
     151           0 :       GenerateShortestDigits(&numerator, &denominator,
     152             :                              &delta_minus, &delta_plus,
     153           0 :                              is_even, buffer, length);
     154           0 :       break;
     155             :     case BIGNUM_DTOA_FIXED:
     156             :       BignumToFixed(requested_digits, decimal_point,
     157             :                     &numerator, &denominator,
     158           0 :                     buffer, length);
     159           0 :       break;
     160             :     case BIGNUM_DTOA_PRECISION:
     161             :       GenerateCountedDigits(requested_digits, decimal_point,
     162             :                             &numerator, &denominator,
     163           0 :                             buffer, length);
     164           0 :       break;
     165             :     default:
     166           0 :       UNREACHABLE();
     167             :   }
     168           0 :   buffer[*length] = '\0';
     169             : }
     170             : 
     171             : 
     172             : // The procedure starts generating digits from the left to the right and stops
     173             : // when the generated digits yield the shortest decimal representation of v. A
     174             : // decimal representation of v is a number lying closer to v than to any other
     175             : // double, so it converts to v when read.
     176             : //
     177             : // This is true if d, the decimal representation, is between m- and m+, the
     178             : // upper and lower boundaries. d must be strictly between them if !is_even.
     179             : //           m- := (numerator - delta_minus) / denominator
     180             : //           m+ := (numerator + delta_plus) / denominator
     181             : //
     182             : // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
     183             : //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
     184             : //   will be produced. This should be the standard precondition.
     185           0 : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
     186             :                                    Bignum* delta_minus, Bignum* delta_plus,
     187             :                                    bool is_even,
     188             :                                    Vector<char> buffer, int* length) {
     189             :   // Small optimization: if delta_minus and delta_plus are the same just reuse
     190             :   // one of the two bignums.
     191           0 :   if (Bignum::Equal(*delta_minus, *delta_plus)) {
     192           0 :     delta_plus = delta_minus;
     193             :   }
     194           0 :   *length = 0;
     195             :   for (;;) {
     196             :     uint16_t digit;
     197           0 :     digit = numerator->DivideModuloIntBignum(*denominator);
     198           0 :     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
     199             :     // digit = numerator / denominator (integer division).
     200             :     // numerator = numerator % denominator.
     201           0 :     buffer[(*length)++] = static_cast<char>(digit + '0');
     202             : 
     203             :     // Can we stop already?
     204             :     // If the remainder of the division is less than the distance to the lower
     205             :     // boundary we can stop. In this case we simply round down (discarding the
     206             :     // remainder).
     207             :     // Similarly we test if we can round up (using the upper boundary).
     208             :     bool in_delta_room_minus;
     209             :     bool in_delta_room_plus;
     210           0 :     if (is_even) {
     211           0 :       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
     212             :     } else {
     213           0 :       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
     214             :     }
     215           0 :     if (is_even) {
     216           0 :       in_delta_room_plus =
     217           0 :           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
     218             :     } else {
     219           0 :       in_delta_room_plus =
     220           0 :           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
     221             :     }
     222           0 :     if (!in_delta_room_minus && !in_delta_room_plus) {
     223             :       // Prepare for next iteration.
     224           0 :       numerator->Times10();
     225           0 :       delta_minus->Times10();
     226             :       // We optimized delta_plus to be equal to delta_minus (if they share the
     227             :       // same value). So don't multiply delta_plus if they point to the same
     228             :       // object.
     229           0 :       if (delta_minus != delta_plus) {
     230           0 :         delta_plus->Times10();
     231             :       }
     232           0 :     } else if (in_delta_room_minus && in_delta_room_plus) {
     233             :       // Let's see if 2*numerator < denominator.
     234             :       // If yes, then the next digit would be < 5 and we can round down.
     235           0 :       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
     236           0 :       if (compare < 0) {
     237             :         // Remaining digits are less than .5. -> Round down (== do nothing).
     238           0 :       } else if (compare > 0) {
     239             :         // Remaining digits are more than .5 of denominator. -> Round up.
     240             :         // Note that the last digit could not be a '9' as otherwise the whole
     241             :         // loop would have stopped earlier.
     242             :         // We still have an assert here in case the preconditions were not
     243             :         // satisfied.
     244           0 :         ASSERT(buffer[(*length) - 1] != '9');
     245           0 :         buffer[(*length) - 1]++;
     246             :       } else {
     247             :         // Halfway case.
     248             :         // TODO(floitsch): need a way to solve half-way cases.
     249             :         //   For now let's round towards even (since this is what Gay seems to
     250             :         //   do).
     251             : 
     252           0 :         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
     253             :           // Round down => Do nothing.
     254             :         } else {
     255           0 :           ASSERT(buffer[(*length) - 1] != '9');
     256           0 :           buffer[(*length) - 1]++;
     257             :         }
     258             :       }
     259           0 :       return;
     260           0 :     } else if (in_delta_room_minus) {
     261             :       // Round down (== do nothing).
     262           0 :       return;
     263             :     } else {  // in_delta_room_plus
     264             :       // Round up.
     265             :       // Note again that the last digit could not be '9' since this would have
     266             :       // stopped the loop earlier.
     267             :       // We still have an ASSERT here, in case the preconditions were not
     268             :       // satisfied.
     269           0 :       ASSERT(buffer[(*length) -1] != '9');
     270           0 :       buffer[(*length) - 1]++;
     271           0 :       return;
     272             :     }
     273           0 :   }
     274             : }
     275             : 
     276             : 
     277             : // Let v = numerator / denominator < 10.
     278             : // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
     279             : // from left to right. Once 'count' digits have been produced we decide wether
     280             : // to round up or down. Remainders of exactly .5 round upwards. Numbers such
     281             : // as 9.999999 propagate a carry all the way, and change the
     282             : // exponent (decimal_point), when rounding upwards.
     283           0 : static void GenerateCountedDigits(int count, int* decimal_point,
     284             :                                   Bignum* numerator, Bignum* denominator,
     285             :                                   Vector<char> buffer, int* length) {
     286           0 :   ASSERT(count >= 0);
     287           0 :   for (int i = 0; i < count - 1; ++i) {
     288             :     uint16_t digit;
     289           0 :     digit = numerator->DivideModuloIntBignum(*denominator);
     290           0 :     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
     291             :     // digit = numerator / denominator (integer division).
     292             :     // numerator = numerator % denominator.
     293           0 :     buffer[i] = static_cast<char>(digit + '0');
     294             :     // Prepare for next iteration.
     295           0 :     numerator->Times10();
     296             :   }
     297             :   // Generate the last digit.
     298             :   uint16_t digit;
     299           0 :   digit = numerator->DivideModuloIntBignum(*denominator);
     300           0 :   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
     301           0 :     digit++;
     302             :   }
     303           0 :   ASSERT(digit <= 10);
     304           0 :   buffer[count - 1] = static_cast<char>(digit + '0');
     305             :   // Correct bad digits (in case we had a sequence of '9's). Propagate the
     306             :   // carry until we hat a non-'9' or til we reach the first digit.
     307           0 :   for (int i = count - 1; i > 0; --i) {
     308           0 :     if (buffer[i] != '0' + 10) break;
     309           0 :     buffer[i] = '0';
     310           0 :     buffer[i - 1]++;
     311             :   }
     312           0 :   if (buffer[0] == '0' + 10) {
     313             :     // Propagate a carry past the top place.
     314           0 :     buffer[0] = '1';
     315           0 :     (*decimal_point)++;
     316             :   }
     317           0 :   *length = count;
     318           0 : }
     319             : 
     320             : 
     321             : // Generates 'requested_digits' after the decimal point. It might omit
     322             : // trailing '0's. If the input number is too small then no digits at all are
     323             : // generated (ex.: 2 fixed digits for 0.00001).
     324             : //
     325             : // Input verifies:  1 <= (numerator + delta) / denominator < 10.
     326           0 : static void BignumToFixed(int requested_digits, int* decimal_point,
     327             :                           Bignum* numerator, Bignum* denominator,
     328             :                           Vector<char>(buffer), int* length) {
     329             :   // Note that we have to look at more than just the requested_digits, since
     330             :   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
     331             :   // Even though the power of v equals 0 we can't just stop here.
     332           0 :   if (-(*decimal_point) > requested_digits) {
     333             :     // The number is definitively too small.
     334             :     // Ex: 0.001 with requested_digits == 1.
     335             :     // Set decimal-point to -requested_digits. This is what Gay does.
     336             :     // Note that it should not have any effect anyways since the string is
     337             :     // empty.
     338           0 :     *decimal_point = -requested_digits;
     339           0 :     *length = 0;
     340           0 :     return;
     341           0 :   } else if (-(*decimal_point) == requested_digits) {
     342             :     // We only need to verify if the number rounds down or up.
     343             :     // Ex: 0.04 and 0.06 with requested_digits == 1.
     344           0 :     ASSERT(*decimal_point == -requested_digits);
     345             :     // Initially the fraction lies in range (1, 10]. Multiply the denominator
     346             :     // by 10 so that we can compare more easily.
     347           0 :     denominator->Times10();
     348           0 :     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
     349             :       // If the fraction is >= 0.5 then we have to include the rounded
     350             :       // digit.
     351           0 :       buffer[0] = '1';
     352           0 :       *length = 1;
     353           0 :       (*decimal_point)++;
     354             :     } else {
     355             :       // Note that we caught most of similar cases earlier.
     356           0 :       *length = 0;
     357             :     }
     358           0 :     return;
     359             :   } else {
     360             :     // The requested digits correspond to the digits after the point.
     361             :     // The variable 'needed_digits' includes the digits before the point.
     362           0 :     int needed_digits = (*decimal_point) + requested_digits;
     363             :     GenerateCountedDigits(needed_digits, decimal_point,
     364             :                           numerator, denominator,
     365           0 :                           buffer, length);
     366             :   }
     367             : }
     368             : 
     369             : 
     370             : // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
     371             : // v = f * 2^exponent and 2^52 <= f < 2^53.
     372             : // v is hence a normalized double with the given exponent. The output is an
     373             : // approximation for the exponent of the decimal approimation .digits * 10^k.
     374             : //
     375             : // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
     376             : // Note: this property holds for v's upper boundary m+ too.
     377             : //    10^k <= m+ < 10^k+1.
     378             : //   (see explanation below).
     379             : //
     380             : // Examples:
     381             : //  EstimatePower(0)   => 16
     382             : //  EstimatePower(-52) => 0
     383             : //
     384             : // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
     385           0 : static int EstimatePower(int exponent) {
     386             :   // This function estimates log10 of v where v = f*2^e (with e == exponent).
     387             :   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
     388             :   // Note that f is bounded by its container size. Let p = 53 (the double's
     389             :   // significand size). Then 2^(p-1) <= f < 2^p.
     390             :   //
     391             :   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
     392             :   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
     393             :   // The computed number undershoots by less than 0.631 (when we compute log3
     394             :   // and not log10).
     395             :   //
     396             :   // Optimization: since we only need an approximated result this computation
     397             :   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
     398             :   // not really measurable, though.
     399             :   //
     400             :   // Since we want to avoid overshooting we decrement by 1e10 so that
     401             :   // floating-point imprecisions don't affect us.
     402             :   //
     403             :   // Explanation for v's boundary m+: the computation takes advantage of
     404             :   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
     405             :   // (even for denormals where the delta can be much more important).
     406             : 
     407           0 :   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
     408             : 
     409             :   // For doubles len(f) == 53 (don't forget the hidden bit).
     410           0 :   const int kSignificandSize = Double::kSignificandSize;
     411           0 :   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
     412           0 :   return static_cast<int>(estimate);
     413             : }
     414             : 
     415             : 
     416             : // See comments for InitialScaledStartValues.
     417           0 : static void InitialScaledStartValuesPositiveExponent(
     418             :     uint64_t significand, int exponent,
     419             :     int estimated_power, bool need_boundary_deltas,
     420             :     Bignum* numerator, Bignum* denominator,
     421             :     Bignum* delta_minus, Bignum* delta_plus) {
     422             :   // A positive exponent implies a positive power.
     423           0 :   ASSERT(estimated_power >= 0);
     424             :   // Since the estimated_power is positive we simply multiply the denominator
     425             :   // by 10^estimated_power.
     426             : 
     427             :   // numerator = v.
     428           0 :   numerator->AssignUInt64(significand);
     429           0 :   numerator->ShiftLeft(exponent);
     430             :   // denominator = 10^estimated_power.
     431           0 :   denominator->AssignPowerUInt16(10, estimated_power);
     432             : 
     433           0 :   if (need_boundary_deltas) {
     434             :     // Introduce a common denominator so that the deltas to the boundaries are
     435             :     // integers.
     436           0 :     denominator->ShiftLeft(1);
     437           0 :     numerator->ShiftLeft(1);
     438             :     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
     439             :     // denominator (of 2) delta_plus equals 2^e.
     440           0 :     delta_plus->AssignUInt16(1);
     441           0 :     delta_plus->ShiftLeft(exponent);
     442             :     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
     443           0 :     delta_minus->AssignUInt16(1);
     444           0 :     delta_minus->ShiftLeft(exponent);
     445             :   }
     446           0 : }
     447             : 
     448             : 
     449             : // See comments for InitialScaledStartValues
     450           0 : static void InitialScaledStartValuesNegativeExponentPositivePower(
     451             :     uint64_t significand, int exponent,
     452             :     int estimated_power, bool need_boundary_deltas,
     453             :     Bignum* numerator, Bignum* denominator,
     454             :     Bignum* delta_minus, Bignum* delta_plus) {
     455             :   // v = f * 2^e with e < 0, and with estimated_power >= 0.
     456             :   // This means that e is close to 0 (have a look at how estimated_power is
     457             :   // computed).
     458             : 
     459             :   // numerator = significand
     460             :   //  since v = significand * 2^exponent this is equivalent to
     461             :   //  numerator = v * / 2^-exponent
     462           0 :   numerator->AssignUInt64(significand);
     463             :   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
     464           0 :   denominator->AssignPowerUInt16(10, estimated_power);
     465           0 :   denominator->ShiftLeft(-exponent);
     466             : 
     467           0 :   if (need_boundary_deltas) {
     468             :     // Introduce a common denominator so that the deltas to the boundaries are
     469             :     // integers.
     470           0 :     denominator->ShiftLeft(1);
     471           0 :     numerator->ShiftLeft(1);
     472             :     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
     473             :     // denominator (of 2) delta_plus equals 2^e.
     474             :     // Given that the denominator already includes v's exponent the distance
     475             :     // to the boundaries is simply 1.
     476           0 :     delta_plus->AssignUInt16(1);
     477             :     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
     478           0 :     delta_minus->AssignUInt16(1);
     479             :   }
     480           0 : }
     481             : 
     482             : 
     483             : // See comments for InitialScaledStartValues
     484           0 : static void InitialScaledStartValuesNegativeExponentNegativePower(
     485             :     uint64_t significand, int exponent,
     486             :     int estimated_power, bool need_boundary_deltas,
     487             :     Bignum* numerator, Bignum* denominator,
     488             :     Bignum* delta_minus, Bignum* delta_plus) {
     489             :   // Instead of multiplying the denominator with 10^estimated_power we
     490             :   // multiply all values (numerator and deltas) by 10^-estimated_power.
     491             : 
     492             :   // Use numerator as temporary container for power_ten.
     493           0 :   Bignum* power_ten = numerator;
     494           0 :   power_ten->AssignPowerUInt16(10, -estimated_power);
     495             : 
     496           0 :   if (need_boundary_deltas) {
     497             :     // Since power_ten == numerator we must make a copy of 10^estimated_power
     498             :     // before we complete the computation of the numerator.
     499             :     // delta_plus = delta_minus = 10^estimated_power
     500           0 :     delta_plus->AssignBignum(*power_ten);
     501           0 :     delta_minus->AssignBignum(*power_ten);
     502             :   }
     503             : 
     504             :   // numerator = significand * 2 * 10^-estimated_power
     505             :   //  since v = significand * 2^exponent this is equivalent to
     506             :   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
     507             :   // Remember: numerator has been abused as power_ten. So no need to assign it
     508             :   //  to itself.
     509           0 :   ASSERT(numerator == power_ten);
     510           0 :   numerator->MultiplyByUInt64(significand);
     511             : 
     512             :   // denominator = 2 * 2^-exponent with exponent < 0.
     513           0 :   denominator->AssignUInt16(1);
     514           0 :   denominator->ShiftLeft(-exponent);
     515             : 
     516           0 :   if (need_boundary_deltas) {
     517             :     // Introduce a common denominator so that the deltas to the boundaries are
     518             :     // integers.
     519           0 :     numerator->ShiftLeft(1);
     520           0 :     denominator->ShiftLeft(1);
     521             :     // With this shift the boundaries have their correct value, since
     522             :     // delta_plus = 10^-estimated_power, and
     523             :     // delta_minus = 10^-estimated_power.
     524             :     // These assignments have been done earlier.
     525             :     // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
     526             :   }
     527           0 : }
     528             : 
     529             : 
     530             : // Let v = significand * 2^exponent.
     531             : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
     532             : // and denominator. The functions GenerateShortestDigits and
     533             : // GenerateCountedDigits will then convert this ratio to its decimal
     534             : // representation d, with the required accuracy.
     535             : // Then d * 10^estimated_power is the representation of v.
     536             : // (Note: the fraction and the estimated_power might get adjusted before
     537             : // generating the decimal representation.)
     538             : //
     539             : // The initial start values consist of:
     540             : //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
     541             : //  - a scaled (common) denominator.
     542             : //  optionally (used by GenerateShortestDigits to decide if it has the shortest
     543             : //  decimal converting back to v):
     544             : //  - v - m-: the distance to the lower boundary.
     545             : //  - m+ - v: the distance to the upper boundary.
     546             : //
     547             : // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
     548             : //
     549             : // Let ep == estimated_power, then the returned values will satisfy:
     550             : //  v / 10^ep = numerator / denominator.
     551             : //  v's boundarys m- and m+:
     552             : //    m- / 10^ep == v / 10^ep - delta_minus / denominator
     553             : //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
     554             : //  Or in other words:
     555             : //    m- == v - delta_minus * 10^ep / denominator;
     556             : //    m+ == v + delta_plus * 10^ep / denominator;
     557             : //
     558             : // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
     559             : //  or       10^k <= v < 10^(k+1)
     560             : //  we then have 0.1 <= numerator/denominator < 1
     561             : //           or    1 <= numerator/denominator < 10
     562             : //
     563             : // It is then easy to kickstart the digit-generation routine.
     564             : //
     565             : // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
     566             : // or BIGNUM_DTOA_SHORTEST_SINGLE.
     567             : 
     568           0 : static void InitialScaledStartValues(uint64_t significand,
     569             :                                      int exponent,
     570             :                                      bool lower_boundary_is_closer,
     571             :                                      int estimated_power,
     572             :                                      bool need_boundary_deltas,
     573             :                                      Bignum* numerator,
     574             :                                      Bignum* denominator,
     575             :                                      Bignum* delta_minus,
     576             :                                      Bignum* delta_plus) {
     577           0 :   if (exponent >= 0) {
     578           0 :     InitialScaledStartValuesPositiveExponent(
     579             :         significand, exponent, estimated_power, need_boundary_deltas,
     580           0 :         numerator, denominator, delta_minus, delta_plus);
     581           0 :   } else if (estimated_power >= 0) {
     582           0 :     InitialScaledStartValuesNegativeExponentPositivePower(
     583             :         significand, exponent, estimated_power, need_boundary_deltas,
     584           0 :         numerator, denominator, delta_minus, delta_plus);
     585             :   } else {
     586           0 :     InitialScaledStartValuesNegativeExponentNegativePower(
     587             :         significand, exponent, estimated_power, need_boundary_deltas,
     588           0 :         numerator, denominator, delta_minus, delta_plus);
     589             :   }
     590             : 
     591           0 :   if (need_boundary_deltas && lower_boundary_is_closer) {
     592             :     // The lower boundary is closer at half the distance of "normal" numbers.
     593             :     // Increase the common denominator and adapt all but the delta_minus.
     594           0 :     denominator->ShiftLeft(1);  // *2
     595           0 :     numerator->ShiftLeft(1);    // *2
     596           0 :     delta_plus->ShiftLeft(1);   // *2
     597             :   }
     598           0 : }
     599             : 
     600             : 
     601             : // This routine multiplies numerator/denominator so that its values lies in the
     602             : // range 1-10. That is after a call to this function we have:
     603             : //    1 <= (numerator + delta_plus) /denominator < 10.
     604             : // Let numerator the input before modification and numerator' the argument
     605             : // after modification, then the output-parameter decimal_point is such that
     606             : //  numerator / denominator * 10^estimated_power ==
     607             : //    numerator' / denominator' * 10^(decimal_point - 1)
     608             : // In some cases estimated_power was too low, and this is already the case. We
     609             : // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
     610             : // estimated_power) but do not touch the numerator or denominator.
     611             : // Otherwise the routine multiplies the numerator and the deltas by 10.
     612           0 : static void FixupMultiply10(int estimated_power, bool is_even,
     613             :                             int* decimal_point,
     614             :                             Bignum* numerator, Bignum* denominator,
     615             :                             Bignum* delta_minus, Bignum* delta_plus) {
     616             :   bool in_range;
     617           0 :   if (is_even) {
     618             :     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
     619             :     // are rounded to the closest floating-point number with even significand.
     620           0 :     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
     621             :   } else {
     622           0 :     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
     623             :   }
     624           0 :   if (in_range) {
     625             :     // Since numerator + delta_plus >= denominator we already have
     626             :     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
     627           0 :     *decimal_point = estimated_power + 1;
     628             :   } else {
     629           0 :     *decimal_point = estimated_power;
     630           0 :     numerator->Times10();
     631           0 :     if (Bignum::Equal(*delta_minus, *delta_plus)) {
     632           0 :       delta_minus->Times10();
     633           0 :       delta_plus->AssignBignum(*delta_minus);
     634             :     } else {
     635           0 :       delta_minus->Times10();
     636           0 :       delta_plus->Times10();
     637             :     }
     638             :   }
     639           0 : }
     640             : 
     641             : }  // namespace double_conversion

Generated by: LCOV version 1.13