LCOV - code coverage report
Current view: top level - mfbt/double-conversion/source - bignum.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 448 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 31 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Copyright 2010 the V8 project authors. All rights reserved.
       2             : // Redistribution and use in source and binary forms, with or without
       3             : // modification, are permitted provided that the following conditions are
       4             : // met:
       5             : //
       6             : //     * Redistributions of source code must retain the above copyright
       7             : //       notice, this list of conditions and the following disclaimer.
       8             : //     * Redistributions in binary form must reproduce the above
       9             : //       copyright notice, this list of conditions and the following
      10             : //       disclaimer in the documentation and/or other materials provided
      11             : //       with the distribution.
      12             : //     * Neither the name of Google Inc. nor the names of its
      13             : //       contributors may be used to endorse or promote products derived
      14             : //       from this software without specific prior written permission.
      15             : //
      16             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      17             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      18             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      19             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      20             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      21             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      22             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      23             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      24             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      25             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      26             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      27             : 
      28             : #include "bignum.h"
      29             : #include "utils.h"
      30             : 
      31             : namespace double_conversion {
      32             : 
      33           0 : Bignum::Bignum()
      34           0 :     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
      35           0 :   for (int i = 0; i < kBigitCapacity; ++i) {
      36           0 :     bigits_[i] = 0;
      37             :   }
      38           0 : }
      39             : 
      40             : 
      41             : template<typename S>
      42           0 : static int BitSize(S value) {
      43             :   (void) value;  // Mark variable as used.
      44           0 :   return 8 * sizeof(value);
      45             : }
      46             : 
      47             : // Guaranteed to lie in one Bigit.
      48           0 : void Bignum::AssignUInt16(uint16_t value) {
      49           0 :   ASSERT(kBigitSize >= BitSize(value));
      50           0 :   Zero();
      51           0 :   if (value == 0) return;
      52             : 
      53           0 :   EnsureCapacity(1);
      54           0 :   bigits_[0] = value;
      55           0 :   used_digits_ = 1;
      56             : }
      57             : 
      58             : 
      59           0 : void Bignum::AssignUInt64(uint64_t value) {
      60           0 :   const int kUInt64Size = 64;
      61             : 
      62           0 :   Zero();
      63           0 :   if (value == 0) return;
      64             : 
      65           0 :   int needed_bigits = kUInt64Size / kBigitSize + 1;
      66           0 :   EnsureCapacity(needed_bigits);
      67           0 :   for (int i = 0; i < needed_bigits; ++i) {
      68           0 :     bigits_[i] = value & kBigitMask;
      69           0 :     value = value >> kBigitSize;
      70             :   }
      71           0 :   used_digits_ = needed_bigits;
      72           0 :   Clamp();
      73             : }
      74             : 
      75             : 
      76           0 : void Bignum::AssignBignum(const Bignum& other) {
      77           0 :   exponent_ = other.exponent_;
      78           0 :   for (int i = 0; i < other.used_digits_; ++i) {
      79           0 :     bigits_[i] = other.bigits_[i];
      80             :   }
      81             :   // Clear the excess digits (if there were any).
      82           0 :   for (int i = other.used_digits_; i < used_digits_; ++i) {
      83           0 :     bigits_[i] = 0;
      84             :   }
      85           0 :   used_digits_ = other.used_digits_;
      86           0 : }
      87             : 
      88             : 
      89           0 : static uint64_t ReadUInt64(Vector<const char> buffer,
      90             :                            int from,
      91             :                            int digits_to_read) {
      92           0 :   uint64_t result = 0;
      93           0 :   for (int i = from; i < from + digits_to_read; ++i) {
      94           0 :     int digit = buffer[i] - '0';
      95           0 :     ASSERT(0 <= digit && digit <= 9);
      96           0 :     result = result * 10 + digit;
      97             :   }
      98           0 :   return result;
      99             : }
     100             : 
     101             : 
     102           0 : void Bignum::AssignDecimalString(Vector<const char> value) {
     103             :   // 2^64 = 18446744073709551616 > 10^19
     104           0 :   const int kMaxUint64DecimalDigits = 19;
     105           0 :   Zero();
     106           0 :   int length = value.length();
     107           0 :   unsigned int pos = 0;
     108             :   // Let's just say that each digit needs 4 bits.
     109           0 :   while (length >= kMaxUint64DecimalDigits) {
     110           0 :     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
     111           0 :     pos += kMaxUint64DecimalDigits;
     112           0 :     length -= kMaxUint64DecimalDigits;
     113           0 :     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
     114           0 :     AddUInt64(digits);
     115             :   }
     116           0 :   uint64_t digits = ReadUInt64(value, pos, length);
     117           0 :   MultiplyByPowerOfTen(length);
     118           0 :   AddUInt64(digits);
     119           0 :   Clamp();
     120           0 : }
     121             : 
     122             : 
     123           0 : static int HexCharValue(char c) {
     124           0 :   if ('0' <= c && c <= '9') return c - '0';
     125           0 :   if ('a' <= c && c <= 'f') return 10 + c - 'a';
     126           0 :   ASSERT('A' <= c && c <= 'F');
     127           0 :   return 10 + c - 'A';
     128             : }
     129             : 
     130             : 
     131           0 : void Bignum::AssignHexString(Vector<const char> value) {
     132           0 :   Zero();
     133           0 :   int length = value.length();
     134             : 
     135           0 :   int needed_bigits = length * 4 / kBigitSize + 1;
     136           0 :   EnsureCapacity(needed_bigits);
     137           0 :   int string_index = length - 1;
     138           0 :   for (int i = 0; i < needed_bigits - 1; ++i) {
     139             :     // These bigits are guaranteed to be "full".
     140           0 :     Chunk current_bigit = 0;
     141           0 :     for (int j = 0; j < kBigitSize / 4; j++) {
     142           0 :       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
     143             :     }
     144           0 :     bigits_[i] = current_bigit;
     145             :   }
     146           0 :   used_digits_ = needed_bigits - 1;
     147             : 
     148           0 :   Chunk most_significant_bigit = 0;  // Could be = 0;
     149           0 :   for (int j = 0; j <= string_index; ++j) {
     150           0 :     most_significant_bigit <<= 4;
     151           0 :     most_significant_bigit += HexCharValue(value[j]);
     152             :   }
     153           0 :   if (most_significant_bigit != 0) {
     154           0 :     bigits_[used_digits_] = most_significant_bigit;
     155           0 :     used_digits_++;
     156             :   }
     157           0 :   Clamp();
     158           0 : }
     159             : 
     160             : 
     161           0 : void Bignum::AddUInt64(uint64_t operand) {
     162           0 :   if (operand == 0) return;
     163           0 :   Bignum other;
     164           0 :   other.AssignUInt64(operand);
     165           0 :   AddBignum(other);
     166             : }
     167             : 
     168             : 
     169           0 : void Bignum::AddBignum(const Bignum& other) {
     170           0 :   ASSERT(IsClamped());
     171           0 :   ASSERT(other.IsClamped());
     172             : 
     173             :   // If this has a greater exponent than other append zero-bigits to this.
     174             :   // After this call exponent_ <= other.exponent_.
     175           0 :   Align(other);
     176             : 
     177             :   // There are two possibilities:
     178             :   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
     179             :   //     bbbbb 00000000
     180             :   //   ----------------
     181             :   //   ccccccccccc 0000
     182             :   // or
     183             :   //    aaaaaaaaaa 0000
     184             :   //  bbbbbbbbb 0000000
     185             :   //  -----------------
     186             :   //  cccccccccccc 0000
     187             :   // In both cases we might need a carry bigit.
     188             : 
     189           0 :   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
     190           0 :   Chunk carry = 0;
     191           0 :   int bigit_pos = other.exponent_ - exponent_;
     192           0 :   ASSERT(bigit_pos >= 0);
     193           0 :   for (int i = 0; i < other.used_digits_; ++i) {
     194           0 :     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
     195           0 :     bigits_[bigit_pos] = sum & kBigitMask;
     196           0 :     carry = sum >> kBigitSize;
     197           0 :     bigit_pos++;
     198             :   }
     199             : 
     200           0 :   while (carry != 0) {
     201           0 :     Chunk sum = bigits_[bigit_pos] + carry;
     202           0 :     bigits_[bigit_pos] = sum & kBigitMask;
     203           0 :     carry = sum >> kBigitSize;
     204           0 :     bigit_pos++;
     205             :   }
     206           0 :   used_digits_ = Max(bigit_pos, used_digits_);
     207           0 :   ASSERT(IsClamped());
     208           0 : }
     209             : 
     210             : 
     211           0 : void Bignum::SubtractBignum(const Bignum& other) {
     212           0 :   ASSERT(IsClamped());
     213           0 :   ASSERT(other.IsClamped());
     214             :   // We require this to be bigger than other.
     215           0 :   ASSERT(LessEqual(other, *this));
     216             : 
     217           0 :   Align(other);
     218             : 
     219           0 :   int offset = other.exponent_ - exponent_;
     220           0 :   Chunk borrow = 0;
     221             :   int i;
     222           0 :   for (i = 0; i < other.used_digits_; ++i) {
     223           0 :     ASSERT((borrow == 0) || (borrow == 1));
     224           0 :     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
     225           0 :     bigits_[i + offset] = difference & kBigitMask;
     226           0 :     borrow = difference >> (kChunkSize - 1);
     227             :   }
     228           0 :   while (borrow != 0) {
     229           0 :     Chunk difference = bigits_[i + offset] - borrow;
     230           0 :     bigits_[i + offset] = difference & kBigitMask;
     231           0 :     borrow = difference >> (kChunkSize - 1);
     232           0 :     ++i;
     233             :   }
     234           0 :   Clamp();
     235           0 : }
     236             : 
     237             : 
     238           0 : void Bignum::ShiftLeft(int shift_amount) {
     239           0 :   if (used_digits_ == 0) return;
     240           0 :   exponent_ += shift_amount / kBigitSize;
     241           0 :   int local_shift = shift_amount % kBigitSize;
     242           0 :   EnsureCapacity(used_digits_ + 1);
     243           0 :   BigitsShiftLeft(local_shift);
     244             : }
     245             : 
     246             : 
     247           0 : void Bignum::MultiplyByUInt32(uint32_t factor) {
     248           0 :   if (factor == 1) return;
     249           0 :   if (factor == 0) {
     250           0 :     Zero();
     251           0 :     return;
     252             :   }
     253           0 :   if (used_digits_ == 0) return;
     254             : 
     255             :   // The product of a bigit with the factor is of size kBigitSize + 32.
     256             :   // Assert that this number + 1 (for the carry) fits into double chunk.
     257             :   ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
     258           0 :   DoubleChunk carry = 0;
     259           0 :   for (int i = 0; i < used_digits_; ++i) {
     260           0 :     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
     261           0 :     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
     262           0 :     carry = (product >> kBigitSize);
     263             :   }
     264           0 :   while (carry != 0) {
     265           0 :     EnsureCapacity(used_digits_ + 1);
     266           0 :     bigits_[used_digits_] = carry & kBigitMask;
     267           0 :     used_digits_++;
     268           0 :     carry >>= kBigitSize;
     269             :   }
     270             : }
     271             : 
     272             : 
     273           0 : void Bignum::MultiplyByUInt64(uint64_t factor) {
     274           0 :   if (factor == 1) return;
     275           0 :   if (factor == 0) {
     276           0 :     Zero();
     277           0 :     return;
     278             :   }
     279             :   ASSERT(kBigitSize < 32);
     280           0 :   uint64_t carry = 0;
     281           0 :   uint64_t low = factor & 0xFFFFFFFF;
     282           0 :   uint64_t high = factor >> 32;
     283           0 :   for (int i = 0; i < used_digits_; ++i) {
     284           0 :     uint64_t product_low = low * bigits_[i];
     285           0 :     uint64_t product_high = high * bigits_[i];
     286           0 :     uint64_t tmp = (carry & kBigitMask) + product_low;
     287           0 :     bigits_[i] = tmp & kBigitMask;
     288           0 :     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
     289           0 :         (product_high << (32 - kBigitSize));
     290             :   }
     291           0 :   while (carry != 0) {
     292           0 :     EnsureCapacity(used_digits_ + 1);
     293           0 :     bigits_[used_digits_] = carry & kBigitMask;
     294           0 :     used_digits_++;
     295           0 :     carry >>= kBigitSize;
     296             :   }
     297             : }
     298             : 
     299             : 
     300           0 : void Bignum::MultiplyByPowerOfTen(int exponent) {
     301           0 :   const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
     302           0 :   const uint16_t kFive1 = 5;
     303           0 :   const uint16_t kFive2 = kFive1 * 5;
     304           0 :   const uint16_t kFive3 = kFive2 * 5;
     305           0 :   const uint16_t kFive4 = kFive3 * 5;
     306           0 :   const uint16_t kFive5 = kFive4 * 5;
     307           0 :   const uint16_t kFive6 = kFive5 * 5;
     308           0 :   const uint32_t kFive7 = kFive6 * 5;
     309           0 :   const uint32_t kFive8 = kFive7 * 5;
     310           0 :   const uint32_t kFive9 = kFive8 * 5;
     311           0 :   const uint32_t kFive10 = kFive9 * 5;
     312           0 :   const uint32_t kFive11 = kFive10 * 5;
     313           0 :   const uint32_t kFive12 = kFive11 * 5;
     314           0 :   const uint32_t kFive13 = kFive12 * 5;
     315             :   const uint32_t kFive1_to_12[] =
     316             :       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
     317           0 :         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
     318             : 
     319           0 :   ASSERT(exponent >= 0);
     320           0 :   if (exponent == 0) return;
     321           0 :   if (used_digits_ == 0) return;
     322             : 
     323             :   // We shift by exponent at the end just before returning.
     324           0 :   int remaining_exponent = exponent;
     325           0 :   while (remaining_exponent >= 27) {
     326           0 :     MultiplyByUInt64(kFive27);
     327           0 :     remaining_exponent -= 27;
     328             :   }
     329           0 :   while (remaining_exponent >= 13) {
     330           0 :     MultiplyByUInt32(kFive13);
     331           0 :     remaining_exponent -= 13;
     332             :   }
     333           0 :   if (remaining_exponent > 0) {
     334           0 :     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
     335             :   }
     336           0 :   ShiftLeft(exponent);
     337             : }
     338             : 
     339             : 
     340           0 : void Bignum::Square() {
     341           0 :   ASSERT(IsClamped());
     342           0 :   int product_length = 2 * used_digits_;
     343           0 :   EnsureCapacity(product_length);
     344             : 
     345             :   // Comba multiplication: compute each column separately.
     346             :   // Example: r = a2a1a0 * b2b1b0.
     347             :   //    r =  1    * a0b0 +
     348             :   //        10    * (a1b0 + a0b1) +
     349             :   //        100   * (a2b0 + a1b1 + a0b2) +
     350             :   //        1000  * (a2b1 + a1b2) +
     351             :   //        10000 * a2b2
     352             :   //
     353             :   // In the worst case we have to accumulate nb-digits products of digit*digit.
     354             :   //
     355             :   // Assert that the additional number of bits in a DoubleChunk are enough to
     356             :   // sum up used_digits of Bigit*Bigit.
     357           0 :   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
     358           0 :     UNIMPLEMENTED();
     359             :   }
     360           0 :   DoubleChunk accumulator = 0;
     361             :   // First shift the digits so we don't overwrite them.
     362           0 :   int copy_offset = used_digits_;
     363           0 :   for (int i = 0; i < used_digits_; ++i) {
     364           0 :     bigits_[copy_offset + i] = bigits_[i];
     365             :   }
     366             :   // We have two loops to avoid some 'if's in the loop.
     367           0 :   for (int i = 0; i < used_digits_; ++i) {
     368             :     // Process temporary digit i with power i.
     369             :     // The sum of the two indices must be equal to i.
     370           0 :     int bigit_index1 = i;
     371           0 :     int bigit_index2 = 0;
     372             :     // Sum all of the sub-products.
     373           0 :     while (bigit_index1 >= 0) {
     374           0 :       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
     375           0 :       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
     376           0 :       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
     377           0 :       bigit_index1--;
     378           0 :       bigit_index2++;
     379             :     }
     380           0 :     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
     381           0 :     accumulator >>= kBigitSize;
     382             :   }
     383           0 :   for (int i = used_digits_; i < product_length; ++i) {
     384           0 :     int bigit_index1 = used_digits_ - 1;
     385           0 :     int bigit_index2 = i - bigit_index1;
     386             :     // Invariant: sum of both indices is again equal to i.
     387             :     // Inner loop runs 0 times on last iteration, emptying accumulator.
     388           0 :     while (bigit_index2 < used_digits_) {
     389           0 :       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
     390           0 :       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
     391           0 :       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
     392           0 :       bigit_index1--;
     393           0 :       bigit_index2++;
     394             :     }
     395             :     // The overwritten bigits_[i] will never be read in further loop iterations,
     396             :     // because bigit_index1 and bigit_index2 are always greater
     397             :     // than i - used_digits_.
     398           0 :     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
     399           0 :     accumulator >>= kBigitSize;
     400             :   }
     401             :   // Since the result was guaranteed to lie inside the number the
     402             :   // accumulator must be 0 now.
     403           0 :   ASSERT(accumulator == 0);
     404             : 
     405             :   // Don't forget to update the used_digits and the exponent.
     406           0 :   used_digits_ = product_length;
     407           0 :   exponent_ *= 2;
     408           0 :   Clamp();
     409           0 : }
     410             : 
     411             : 
     412           0 : void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
     413           0 :   ASSERT(base != 0);
     414           0 :   ASSERT(power_exponent >= 0);
     415           0 :   if (power_exponent == 0) {
     416           0 :     AssignUInt16(1);
     417           0 :     return;
     418             :   }
     419           0 :   Zero();
     420           0 :   int shifts = 0;
     421             :   // We expect base to be in range 2-32, and most often to be 10.
     422             :   // It does not make much sense to implement different algorithms for counting
     423             :   // the bits.
     424           0 :   while ((base & 1) == 0) {
     425           0 :     base >>= 1;
     426           0 :     shifts++;
     427             :   }
     428           0 :   int bit_size = 0;
     429           0 :   int tmp_base = base;
     430           0 :   while (tmp_base != 0) {
     431           0 :     tmp_base >>= 1;
     432           0 :     bit_size++;
     433             :   }
     434           0 :   int final_size = bit_size * power_exponent;
     435             :   // 1 extra bigit for the shifting, and one for rounded final_size.
     436           0 :   EnsureCapacity(final_size / kBigitSize + 2);
     437             : 
     438             :   // Left to Right exponentiation.
     439           0 :   int mask = 1;
     440           0 :   while (power_exponent >= mask) mask <<= 1;
     441             : 
     442             :   // The mask is now pointing to the bit above the most significant 1-bit of
     443             :   // power_exponent.
     444             :   // Get rid of first 1-bit;
     445           0 :   mask >>= 2;
     446           0 :   uint64_t this_value = base;
     447             : 
     448           0 :   bool delayed_multipliciation = false;
     449           0 :   const uint64_t max_32bits = 0xFFFFFFFF;
     450           0 :   while (mask != 0 && this_value <= max_32bits) {
     451           0 :     this_value = this_value * this_value;
     452             :     // Verify that there is enough space in this_value to perform the
     453             :     // multiplication.  The first bit_size bits must be 0.
     454           0 :     if ((power_exponent & mask) != 0) {
     455             :       uint64_t base_bits_mask =
     456           0 :           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
     457           0 :       bool high_bits_zero = (this_value & base_bits_mask) == 0;
     458           0 :       if (high_bits_zero) {
     459           0 :         this_value *= base;
     460             :       } else {
     461           0 :         delayed_multipliciation = true;
     462             :       }
     463             :     }
     464           0 :     mask >>= 1;
     465             :   }
     466           0 :   AssignUInt64(this_value);
     467           0 :   if (delayed_multipliciation) {
     468           0 :     MultiplyByUInt32(base);
     469             :   }
     470             : 
     471             :   // Now do the same thing as a bignum.
     472           0 :   while (mask != 0) {
     473           0 :     Square();
     474           0 :     if ((power_exponent & mask) != 0) {
     475           0 :       MultiplyByUInt32(base);
     476             :     }
     477           0 :     mask >>= 1;
     478             :   }
     479             : 
     480             :   // And finally add the saved shifts.
     481           0 :   ShiftLeft(shifts * power_exponent);
     482             : }
     483             : 
     484             : 
     485             : // Precondition: this/other < 16bit.
     486           0 : uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
     487           0 :   ASSERT(IsClamped());
     488           0 :   ASSERT(other.IsClamped());
     489           0 :   ASSERT(other.used_digits_ > 0);
     490             : 
     491             :   // Easy case: if we have less digits than the divisor than the result is 0.
     492             :   // Note: this handles the case where this == 0, too.
     493           0 :   if (BigitLength() < other.BigitLength()) {
     494           0 :     return 0;
     495             :   }
     496             : 
     497           0 :   Align(other);
     498             : 
     499           0 :   uint16_t result = 0;
     500             : 
     501             :   // Start by removing multiples of 'other' until both numbers have the same
     502             :   // number of digits.
     503           0 :   while (BigitLength() > other.BigitLength()) {
     504             :     // This naive approach is extremely inefficient if `this` divided by other
     505             :     // is big. This function is implemented for doubleToString where
     506             :     // the result should be small (less than 10).
     507           0 :     ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
     508           0 :     ASSERT(bigits_[used_digits_ - 1] < 0x10000);
     509             :     // Remove the multiples of the first digit.
     510             :     // Example this = 23 and other equals 9. -> Remove 2 multiples.
     511           0 :     result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
     512           0 :     SubtractTimes(other, bigits_[used_digits_ - 1]);
     513             :   }
     514             : 
     515           0 :   ASSERT(BigitLength() == other.BigitLength());
     516             : 
     517             :   // Both bignums are at the same length now.
     518             :   // Since other has more than 0 digits we know that the access to
     519             :   // bigits_[used_digits_ - 1] is safe.
     520           0 :   Chunk this_bigit = bigits_[used_digits_ - 1];
     521           0 :   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
     522             : 
     523           0 :   if (other.used_digits_ == 1) {
     524             :     // Shortcut for easy (and common) case.
     525           0 :     int quotient = this_bigit / other_bigit;
     526           0 :     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
     527           0 :     ASSERT(quotient < 0x10000);
     528           0 :     result += static_cast<uint16_t>(quotient);
     529           0 :     Clamp();
     530           0 :     return result;
     531             :   }
     532             : 
     533           0 :   int division_estimate = this_bigit / (other_bigit + 1);
     534           0 :   ASSERT(division_estimate < 0x10000);
     535           0 :   result += static_cast<uint16_t>(division_estimate);
     536           0 :   SubtractTimes(other, division_estimate);
     537             : 
     538           0 :   if (other_bigit * (division_estimate + 1) > this_bigit) {
     539             :     // No need to even try to subtract. Even if other's remaining digits were 0
     540             :     // another subtraction would be too much.
     541           0 :     return result;
     542             :   }
     543             : 
     544           0 :   while (LessEqual(other, *this)) {
     545           0 :     SubtractBignum(other);
     546           0 :     result++;
     547             :   }
     548           0 :   return result;
     549             : }
     550             : 
     551             : 
     552             : template<typename S>
     553           0 : static int SizeInHexChars(S number) {
     554           0 :   ASSERT(number > 0);
     555           0 :   int result = 0;
     556           0 :   while (number != 0) {
     557           0 :     number >>= 4;
     558           0 :     result++;
     559             :   }
     560           0 :   return result;
     561             : }
     562             : 
     563             : 
     564           0 : static char HexCharOfValue(int value) {
     565           0 :   ASSERT(0 <= value && value <= 16);
     566           0 :   if (value < 10) return static_cast<char>(value + '0');
     567           0 :   return static_cast<char>(value - 10 + 'A');
     568             : }
     569             : 
     570             : 
     571           0 : bool Bignum::ToHexString(char* buffer, int buffer_size) const {
     572           0 :   ASSERT(IsClamped());
     573             :   // Each bigit must be printable as separate hex-character.
     574             :   ASSERT(kBigitSize % 4 == 0);
     575           0 :   const int kHexCharsPerBigit = kBigitSize / 4;
     576             : 
     577           0 :   if (used_digits_ == 0) {
     578           0 :     if (buffer_size < 2) return false;
     579           0 :     buffer[0] = '0';
     580           0 :     buffer[1] = '\0';
     581           0 :     return true;
     582             :   }
     583             :   // We add 1 for the terminating '\0' character.
     584           0 :   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
     585           0 :       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
     586           0 :   if (needed_chars > buffer_size) return false;
     587           0 :   int string_index = needed_chars - 1;
     588           0 :   buffer[string_index--] = '\0';
     589           0 :   for (int i = 0; i < exponent_; ++i) {
     590           0 :     for (int j = 0; j < kHexCharsPerBigit; ++j) {
     591           0 :       buffer[string_index--] = '0';
     592             :     }
     593             :   }
     594           0 :   for (int i = 0; i < used_digits_ - 1; ++i) {
     595           0 :     Chunk current_bigit = bigits_[i];
     596           0 :     for (int j = 0; j < kHexCharsPerBigit; ++j) {
     597           0 :       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
     598           0 :       current_bigit >>= 4;
     599             :     }
     600             :   }
     601             :   // And finally the last bigit.
     602           0 :   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
     603           0 :   while (most_significant_bigit != 0) {
     604           0 :     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
     605           0 :     most_significant_bigit >>= 4;
     606             :   }
     607           0 :   return true;
     608             : }
     609             : 
     610             : 
     611           0 : Bignum::Chunk Bignum::BigitAt(int index) const {
     612           0 :   if (index >= BigitLength()) return 0;
     613           0 :   if (index < exponent_) return 0;
     614           0 :   return bigits_[index - exponent_];
     615             : }
     616             : 
     617             : 
     618           0 : int Bignum::Compare(const Bignum& a, const Bignum& b) {
     619           0 :   ASSERT(a.IsClamped());
     620           0 :   ASSERT(b.IsClamped());
     621           0 :   int bigit_length_a = a.BigitLength();
     622           0 :   int bigit_length_b = b.BigitLength();
     623           0 :   if (bigit_length_a < bigit_length_b) return -1;
     624           0 :   if (bigit_length_a > bigit_length_b) return +1;
     625           0 :   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
     626           0 :     Chunk bigit_a = a.BigitAt(i);
     627           0 :     Chunk bigit_b = b.BigitAt(i);
     628           0 :     if (bigit_a < bigit_b) return -1;
     629           0 :     if (bigit_a > bigit_b) return +1;
     630             :     // Otherwise they are equal up to this digit. Try the next digit.
     631             :   }
     632           0 :   return 0;
     633             : }
     634             : 
     635             : 
     636           0 : int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
     637           0 :   ASSERT(a.IsClamped());
     638           0 :   ASSERT(b.IsClamped());
     639           0 :   ASSERT(c.IsClamped());
     640           0 :   if (a.BigitLength() < b.BigitLength()) {
     641           0 :     return PlusCompare(b, a, c);
     642             :   }
     643           0 :   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
     644           0 :   if (a.BigitLength() > c.BigitLength()) return +1;
     645             :   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
     646             :   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
     647             :   // of 'a'.
     648           0 :   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
     649           0 :     return -1;
     650             :   }
     651             : 
     652           0 :   Chunk borrow = 0;
     653             :   // Starting at min_exponent all digits are == 0. So no need to compare them.
     654           0 :   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
     655           0 :   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
     656           0 :     Chunk chunk_a = a.BigitAt(i);
     657           0 :     Chunk chunk_b = b.BigitAt(i);
     658           0 :     Chunk chunk_c = c.BigitAt(i);
     659           0 :     Chunk sum = chunk_a + chunk_b;
     660           0 :     if (sum > chunk_c + borrow) {
     661           0 :       return +1;
     662             :     } else {
     663           0 :       borrow = chunk_c + borrow - sum;
     664           0 :       if (borrow > 1) return -1;
     665           0 :       borrow <<= kBigitSize;
     666             :     }
     667             :   }
     668           0 :   if (borrow == 0) return 0;
     669           0 :   return -1;
     670             : }
     671             : 
     672             : 
     673           0 : void Bignum::Clamp() {
     674           0 :   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
     675           0 :     used_digits_--;
     676             :   }
     677           0 :   if (used_digits_ == 0) {
     678             :     // Zero.
     679           0 :     exponent_ = 0;
     680             :   }
     681           0 : }
     682             : 
     683             : 
     684           0 : bool Bignum::IsClamped() const {
     685           0 :   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
     686             : }
     687             : 
     688             : 
     689           0 : void Bignum::Zero() {
     690           0 :   for (int i = 0; i < used_digits_; ++i) {
     691           0 :     bigits_[i] = 0;
     692             :   }
     693           0 :   used_digits_ = 0;
     694           0 :   exponent_ = 0;
     695           0 : }
     696             : 
     697             : 
     698           0 : void Bignum::Align(const Bignum& other) {
     699           0 :   if (exponent_ > other.exponent_) {
     700             :     // If "X" represents a "hidden" digit (by the exponent) then we are in the
     701             :     // following case (a == this, b == other):
     702             :     // a:  aaaaaaXXXX   or a:   aaaaaXXX
     703             :     // b:     bbbbbbX      b: bbbbbbbbXX
     704             :     // We replace some of the hidden digits (X) of a with 0 digits.
     705             :     // a:  aaaaaa000X   or a:   aaaaa0XX
     706           0 :     int zero_digits = exponent_ - other.exponent_;
     707           0 :     EnsureCapacity(used_digits_ + zero_digits);
     708           0 :     for (int i = used_digits_ - 1; i >= 0; --i) {
     709           0 :       bigits_[i + zero_digits] = bigits_[i];
     710             :     }
     711           0 :     for (int i = 0; i < zero_digits; ++i) {
     712           0 :       bigits_[i] = 0;
     713             :     }
     714           0 :     used_digits_ += zero_digits;
     715           0 :     exponent_ -= zero_digits;
     716           0 :     ASSERT(used_digits_ >= 0);
     717           0 :     ASSERT(exponent_ >= 0);
     718             :   }
     719           0 : }
     720             : 
     721             : 
     722           0 : void Bignum::BigitsShiftLeft(int shift_amount) {
     723           0 :   ASSERT(shift_amount < kBigitSize);
     724           0 :   ASSERT(shift_amount >= 0);
     725           0 :   Chunk carry = 0;
     726           0 :   for (int i = 0; i < used_digits_; ++i) {
     727           0 :     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
     728           0 :     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
     729           0 :     carry = new_carry;
     730             :   }
     731           0 :   if (carry != 0) {
     732           0 :     bigits_[used_digits_] = carry;
     733           0 :     used_digits_++;
     734             :   }
     735           0 : }
     736             : 
     737             : 
     738           0 : void Bignum::SubtractTimes(const Bignum& other, int factor) {
     739           0 :   ASSERT(exponent_ <= other.exponent_);
     740           0 :   if (factor < 3) {
     741           0 :     for (int i = 0; i < factor; ++i) {
     742           0 :       SubtractBignum(other);
     743             :     }
     744           0 :     return;
     745             :   }
     746           0 :   Chunk borrow = 0;
     747           0 :   int exponent_diff = other.exponent_ - exponent_;
     748           0 :   for (int i = 0; i < other.used_digits_; ++i) {
     749           0 :     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
     750           0 :     DoubleChunk remove = borrow + product;
     751           0 :     Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask);
     752           0 :     bigits_[i + exponent_diff] = difference & kBigitMask;
     753           0 :     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
     754           0 :                                 (remove >> kBigitSize));
     755             :   }
     756           0 :   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
     757           0 :     if (borrow == 0) return;
     758           0 :     Chunk difference = bigits_[i] - borrow;
     759           0 :     bigits_[i] = difference & kBigitMask;
     760           0 :     borrow = difference >> (kChunkSize - 1);
     761             :   }
     762           0 :   Clamp();
     763             : }
     764             : 
     765             : 
     766             : }  // namespace double_conversion

Generated by: LCOV version 1.13