LCOV - code coverage report
Current view: top level - mfbt/double-conversion/source - fixed-dtoa.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 201 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 14 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Copyright 2010 the V8 project authors. All rights reserved.
       2             : // Redistribution and use in source and binary forms, with or without
       3             : // modification, are permitted provided that the following conditions are
       4             : // met:
       5             : //
       6             : //     * Redistributions of source code must retain the above copyright
       7             : //       notice, this list of conditions and the following disclaimer.
       8             : //     * Redistributions in binary form must reproduce the above
       9             : //       copyright notice, this list of conditions and the following
      10             : //       disclaimer in the documentation and/or other materials provided
      11             : //       with the distribution.
      12             : //     * Neither the name of Google Inc. nor the names of its
      13             : //       contributors may be used to endorse or promote products derived
      14             : //       from this software without specific prior written permission.
      15             : //
      16             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      17             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      18             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      19             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      20             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      21             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      22             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      23             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      24             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      25             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      26             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      27             : 
      28             : #include <math.h>
      29             : 
      30             : #include "fixed-dtoa.h"
      31             : #include "ieee.h"
      32             : 
      33             : namespace double_conversion {
      34             : 
      35             : // Represents a 128bit type. This class should be replaced by a native type on
      36             : // platforms that support 128bit integers.
      37             : class UInt128 {
      38             :  public:
      39             :   UInt128() : high_bits_(0), low_bits_(0) { }
      40           0 :   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
      41             : 
      42           0 :   void Multiply(uint32_t multiplicand) {
      43             :     uint64_t accumulator;
      44             : 
      45           0 :     accumulator = (low_bits_ & kMask32) * multiplicand;
      46           0 :     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
      47           0 :     accumulator >>= 32;
      48           0 :     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
      49           0 :     low_bits_ = (accumulator << 32) + part;
      50           0 :     accumulator >>= 32;
      51           0 :     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
      52           0 :     part = static_cast<uint32_t>(accumulator & kMask32);
      53           0 :     accumulator >>= 32;
      54           0 :     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
      55           0 :     high_bits_ = (accumulator << 32) + part;
      56           0 :     ASSERT((accumulator >> 32) == 0);
      57           0 :   }
      58             : 
      59           0 :   void Shift(int shift_amount) {
      60           0 :     ASSERT(-64 <= shift_amount && shift_amount <= 64);
      61           0 :     if (shift_amount == 0) {
      62           0 :       return;
      63           0 :     } else if (shift_amount == -64) {
      64           0 :       high_bits_ = low_bits_;
      65           0 :       low_bits_ = 0;
      66           0 :     } else if (shift_amount == 64) {
      67           0 :       low_bits_ = high_bits_;
      68           0 :       high_bits_ = 0;
      69           0 :     } else if (shift_amount <= 0) {
      70           0 :       high_bits_ <<= -shift_amount;
      71           0 :       high_bits_ += low_bits_ >> (64 + shift_amount);
      72           0 :       low_bits_ <<= -shift_amount;
      73             :     } else {
      74           0 :       low_bits_ >>= shift_amount;
      75           0 :       low_bits_ += high_bits_ << (64 - shift_amount);
      76           0 :       high_bits_ >>= shift_amount;
      77             :     }
      78             :   }
      79             : 
      80             :   // Modifies *this to *this MOD (2^power).
      81             :   // Returns *this DIV (2^power).
      82           0 :   int DivModPowerOf2(int power) {
      83           0 :     if (power >= 64) {
      84           0 :       int result = static_cast<int>(high_bits_ >> (power - 64));
      85           0 :       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
      86           0 :       return result;
      87             :     } else {
      88           0 :       uint64_t part_low = low_bits_ >> power;
      89           0 :       uint64_t part_high = high_bits_ << (64 - power);
      90           0 :       int result = static_cast<int>(part_low + part_high);
      91           0 :       high_bits_ = 0;
      92           0 :       low_bits_ -= part_low << power;
      93           0 :       return result;
      94             :     }
      95             :   }
      96             : 
      97           0 :   bool IsZero() const {
      98           0 :     return high_bits_ == 0 && low_bits_ == 0;
      99             :   }
     100             : 
     101           0 :   int BitAt(int position) const {
     102           0 :     if (position >= 64) {
     103           0 :       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
     104             :     } else {
     105           0 :       return static_cast<int>(low_bits_ >> position) & 1;
     106             :     }
     107             :   }
     108             : 
     109             :  private:
     110             :   static const uint64_t kMask32 = 0xFFFFFFFF;
     111             :   // Value == (high_bits_ << 64) + low_bits_
     112             :   uint64_t high_bits_;
     113             :   uint64_t low_bits_;
     114             : };
     115             : 
     116             : 
     117             : static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
     118             : 
     119             : 
     120           0 : static void FillDigits32FixedLength(uint32_t number, int requested_length,
     121             :                                     Vector<char> buffer, int* length) {
     122           0 :   for (int i = requested_length - 1; i >= 0; --i) {
     123           0 :     buffer[(*length) + i] = '0' + number % 10;
     124           0 :     number /= 10;
     125             :   }
     126           0 :   *length += requested_length;
     127           0 : }
     128             : 
     129             : 
     130           0 : static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
     131           0 :   int number_length = 0;
     132             :   // We fill the digits in reverse order and exchange them afterwards.
     133           0 :   while (number != 0) {
     134           0 :     int digit = number % 10;
     135           0 :     number /= 10;
     136           0 :     buffer[(*length) + number_length] = static_cast<char>('0' + digit);
     137           0 :     number_length++;
     138             :   }
     139             :   // Exchange the digits.
     140           0 :   int i = *length;
     141           0 :   int j = *length + number_length - 1;
     142           0 :   while (i < j) {
     143           0 :     char tmp = buffer[i];
     144           0 :     buffer[i] = buffer[j];
     145           0 :     buffer[j] = tmp;
     146           0 :     i++;
     147           0 :     j--;
     148             :   }
     149           0 :   *length += number_length;
     150           0 : }
     151             : 
     152             : 
     153           0 : static void FillDigits64FixedLength(uint64_t number,
     154             :                                     Vector<char> buffer, int* length) {
     155           0 :   const uint32_t kTen7 = 10000000;
     156             :   // For efficiency cut the number into 3 uint32_t parts, and print those.
     157           0 :   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
     158           0 :   number /= kTen7;
     159           0 :   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
     160           0 :   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
     161             : 
     162           0 :   FillDigits32FixedLength(part0, 3, buffer, length);
     163           0 :   FillDigits32FixedLength(part1, 7, buffer, length);
     164           0 :   FillDigits32FixedLength(part2, 7, buffer, length);
     165           0 : }
     166             : 
     167             : 
     168           0 : static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
     169           0 :   const uint32_t kTen7 = 10000000;
     170             :   // For efficiency cut the number into 3 uint32_t parts, and print those.
     171           0 :   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
     172           0 :   number /= kTen7;
     173           0 :   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
     174           0 :   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
     175             : 
     176           0 :   if (part0 != 0) {
     177           0 :     FillDigits32(part0, buffer, length);
     178           0 :     FillDigits32FixedLength(part1, 7, buffer, length);
     179           0 :     FillDigits32FixedLength(part2, 7, buffer, length);
     180           0 :   } else if (part1 != 0) {
     181           0 :     FillDigits32(part1, buffer, length);
     182           0 :     FillDigits32FixedLength(part2, 7, buffer, length);
     183             :   } else {
     184           0 :     FillDigits32(part2, buffer, length);
     185             :   }
     186           0 : }
     187             : 
     188             : 
     189           0 : static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
     190             :   // An empty buffer represents 0.
     191           0 :   if (*length == 0) {
     192           0 :     buffer[0] = '1';
     193           0 :     *decimal_point = 1;
     194           0 :     *length = 1;
     195           0 :     return;
     196             :   }
     197             :   // Round the last digit until we either have a digit that was not '9' or until
     198             :   // we reached the first digit.
     199           0 :   buffer[(*length) - 1]++;
     200           0 :   for (int i = (*length) - 1; i > 0; --i) {
     201           0 :     if (buffer[i] != '0' + 10) {
     202           0 :       return;
     203             :     }
     204           0 :     buffer[i] = '0';
     205           0 :     buffer[i - 1]++;
     206             :   }
     207             :   // If the first digit is now '0' + 10, we would need to set it to '0' and add
     208             :   // a '1' in front. However we reach the first digit only if all following
     209             :   // digits had been '9' before rounding up. Now all trailing digits are '0' and
     210             :   // we simply switch the first digit to '1' and update the decimal-point
     211             :   // (indicating that the point is now one digit to the right).
     212           0 :   if (buffer[0] == '0' + 10) {
     213           0 :     buffer[0] = '1';
     214           0 :     (*decimal_point)++;
     215             :   }
     216             : }
     217             : 
     218             : 
     219             : // The given fractionals number represents a fixed-point number with binary
     220             : // point at bit (-exponent).
     221             : // Preconditions:
     222             : //   -128 <= exponent <= 0.
     223             : //   0 <= fractionals * 2^exponent < 1
     224             : //   The buffer holds the result.
     225             : // The function will round its result. During the rounding-process digits not
     226             : // generated by this function might be updated, and the decimal-point variable
     227             : // might be updated. If this function generates the digits 99 and the buffer
     228             : // already contained "199" (thus yielding a buffer of "19999") then a
     229             : // rounding-up will change the contents of the buffer to "20000".
     230           0 : static void FillFractionals(uint64_t fractionals, int exponent,
     231             :                             int fractional_count, Vector<char> buffer,
     232             :                             int* length, int* decimal_point) {
     233           0 :   ASSERT(-128 <= exponent && exponent <= 0);
     234             :   // 'fractionals' is a fixed-point number, with binary point at bit
     235             :   // (-exponent). Inside the function the non-converted remainder of fractionals
     236             :   // is a fixed-point number, with binary point at bit 'point'.
     237           0 :   if (-exponent <= 64) {
     238             :     // One 64 bit number is sufficient.
     239           0 :     ASSERT(fractionals >> 56 == 0);
     240           0 :     int point = -exponent;
     241           0 :     for (int i = 0; i < fractional_count; ++i) {
     242           0 :       if (fractionals == 0) break;
     243             :       // Instead of multiplying by 10 we multiply by 5 and adjust the point
     244             :       // location. This way the fractionals variable will not overflow.
     245             :       // Invariant at the beginning of the loop: fractionals < 2^point.
     246             :       // Initially we have: point <= 64 and fractionals < 2^56
     247             :       // After each iteration the point is decremented by one.
     248             :       // Note that 5^3 = 125 < 128 = 2^7.
     249             :       // Therefore three iterations of this loop will not overflow fractionals
     250             :       // (even without the subtraction at the end of the loop body). At this
     251             :       // time point will satisfy point <= 61 and therefore fractionals < 2^point
     252             :       // and any further multiplication of fractionals by 5 will not overflow.
     253           0 :       fractionals *= 5;
     254           0 :       point--;
     255           0 :       int digit = static_cast<int>(fractionals >> point);
     256           0 :       ASSERT(digit <= 9);
     257           0 :       buffer[*length] = static_cast<char>('0' + digit);
     258           0 :       (*length)++;
     259           0 :       fractionals -= static_cast<uint64_t>(digit) << point;
     260             :     }
     261             :     // If the first bit after the point is set we have to round up.
     262           0 :     if (((fractionals >> (point - 1)) & 1) == 1) {
     263           0 :       RoundUp(buffer, length, decimal_point);
     264             :     }
     265             :   } else {  // We need 128 bits.
     266           0 :     ASSERT(64 < -exponent && -exponent <= 128);
     267           0 :     UInt128 fractionals128 = UInt128(fractionals, 0);
     268           0 :     fractionals128.Shift(-exponent - 64);
     269           0 :     int point = 128;
     270           0 :     for (int i = 0; i < fractional_count; ++i) {
     271           0 :       if (fractionals128.IsZero()) break;
     272             :       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
     273             :       // point location.
     274             :       // This multiplication will not overflow for the same reasons as before.
     275           0 :       fractionals128.Multiply(5);
     276           0 :       point--;
     277           0 :       int digit = fractionals128.DivModPowerOf2(point);
     278           0 :       ASSERT(digit <= 9);
     279           0 :       buffer[*length] = static_cast<char>('0' + digit);
     280           0 :       (*length)++;
     281             :     }
     282           0 :     if (fractionals128.BitAt(point - 1) == 1) {
     283           0 :       RoundUp(buffer, length, decimal_point);
     284             :     }
     285             :   }
     286           0 : }
     287             : 
     288             : 
     289             : // Removes leading and trailing zeros.
     290             : // If leading zeros are removed then the decimal point position is adjusted.
     291           0 : static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
     292           0 :   while (*length > 0 && buffer[(*length) - 1] == '0') {
     293           0 :     (*length)--;
     294             :   }
     295           0 :   int first_non_zero = 0;
     296           0 :   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
     297           0 :     first_non_zero++;
     298             :   }
     299           0 :   if (first_non_zero != 0) {
     300           0 :     for (int i = first_non_zero; i < *length; ++i) {
     301           0 :       buffer[i - first_non_zero] = buffer[i];
     302             :     }
     303           0 :     *length -= first_non_zero;
     304           0 :     *decimal_point -= first_non_zero;
     305             :   }
     306           0 : }
     307             : 
     308             : 
     309           0 : bool FastFixedDtoa(double v,
     310             :                    int fractional_count,
     311             :                    Vector<char> buffer,
     312             :                    int* length,
     313             :                    int* decimal_point) {
     314           0 :   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
     315           0 :   uint64_t significand = Double(v).Significand();
     316           0 :   int exponent = Double(v).Exponent();
     317             :   // v = significand * 2^exponent (with significand a 53bit integer).
     318             :   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
     319             :   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
     320             :   // If necessary this limit could probably be increased, but we don't need
     321             :   // more.
     322           0 :   if (exponent > 20) return false;
     323           0 :   if (fractional_count > 20) return false;
     324           0 :   *length = 0;
     325             :   // At most kDoubleSignificandSize bits of the significand are non-zero.
     326             :   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
     327             :   // bits:  0..11*..0xxx..53*..xx
     328           0 :   if (exponent + kDoubleSignificandSize > 64) {
     329             :     // The exponent must be > 11.
     330             :     //
     331             :     // We know that v = significand * 2^exponent.
     332             :     // And the exponent > 11.
     333             :     // We simplify the task by dividing v by 10^17.
     334             :     // The quotient delivers the first digits, and the remainder fits into a 64
     335             :     // bit number.
     336             :     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
     337           0 :     const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
     338           0 :     uint64_t divisor = kFive17;
     339           0 :     int divisor_power = 17;
     340           0 :     uint64_t dividend = significand;
     341             :     uint32_t quotient;
     342             :     uint64_t remainder;
     343             :     // Let v = f * 2^e with f == significand and e == exponent.
     344             :     // Then need q (quotient) and r (remainder) as follows:
     345             :     //   v            = q * 10^17       + r
     346             :     //   f * 2^e      = q * 10^17       + r
     347             :     //   f * 2^e      = q * 5^17 * 2^17 + r
     348             :     // If e > 17 then
     349             :     //   f * 2^(e-17) = q * 5^17        + r/2^17
     350             :     // else
     351             :     //   f  = q * 5^17 * 2^(17-e) + r/2^e
     352           0 :     if (exponent > divisor_power) {
     353             :       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
     354           0 :       dividend <<= exponent - divisor_power;
     355           0 :       quotient = static_cast<uint32_t>(dividend / divisor);
     356           0 :       remainder = (dividend % divisor) << divisor_power;
     357             :     } else {
     358           0 :       divisor <<= divisor_power - exponent;
     359           0 :       quotient = static_cast<uint32_t>(dividend / divisor);
     360           0 :       remainder = (dividend % divisor) << exponent;
     361             :     }
     362           0 :     FillDigits32(quotient, buffer, length);
     363           0 :     FillDigits64FixedLength(remainder, buffer, length);
     364           0 :     *decimal_point = *length;
     365           0 :   } else if (exponent >= 0) {
     366             :     // 0 <= exponent <= 11
     367           0 :     significand <<= exponent;
     368           0 :     FillDigits64(significand, buffer, length);
     369           0 :     *decimal_point = *length;
     370           0 :   } else if (exponent > -kDoubleSignificandSize) {
     371             :     // We have to cut the number.
     372           0 :     uint64_t integrals = significand >> -exponent;
     373           0 :     uint64_t fractionals = significand - (integrals << -exponent);
     374           0 :     if (integrals > kMaxUInt32) {
     375           0 :       FillDigits64(integrals, buffer, length);
     376             :     } else {
     377           0 :       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
     378             :     }
     379           0 :     *decimal_point = *length;
     380             :     FillFractionals(fractionals, exponent, fractional_count,
     381           0 :                     buffer, length, decimal_point);
     382           0 :   } else if (exponent < -128) {
     383             :     // This configuration (with at most 20 digits) means that all digits must be
     384             :     // 0.
     385           0 :     ASSERT(fractional_count <= 20);
     386           0 :     buffer[0] = '\0';
     387           0 :     *length = 0;
     388           0 :     *decimal_point = -fractional_count;
     389             :   } else {
     390           0 :     *decimal_point = 0;
     391             :     FillFractionals(significand, exponent, fractional_count,
     392           0 :                     buffer, length, decimal_point);
     393             :   }
     394           0 :   TrimZeros(buffer, length, decimal_point);
     395           0 :   buffer[*length] = '\0';
     396           0 :   if ((*length) == 0) {
     397             :     // The string is empty and the decimal_point thus has no importance. Mimick
     398             :     // Gay's dtoa and and set it to -fractional_count.
     399           0 :     *decimal_point = -fractional_count;
     400             :   }
     401           0 :   return true;
     402             : }
     403             : 
     404             : }  // namespace double_conversion

Generated by: LCOV version 1.13