LCOV - code coverage report
Current view: top level - mfbt/double-conversion/source - ieee.h (source / functions) Hit Total Coverage
Test: output.info Lines: 52 159 32.7 %
Date: 2017-07-14 16:53:18 Functions: 14 39 35.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Redistribution and use in source and binary forms, with or without
       3             : // modification, are permitted provided that the following conditions are
       4             : // met:
       5             : //
       6             : //     * Redistributions of source code must retain the above copyright
       7             : //       notice, this list of conditions and the following disclaimer.
       8             : //     * Redistributions in binary form must reproduce the above
       9             : //       copyright notice, this list of conditions and the following
      10             : //       disclaimer in the documentation and/or other materials provided
      11             : //       with the distribution.
      12             : //     * Neither the name of Google Inc. nor the names of its
      13             : //       contributors may be used to endorse or promote products derived
      14             : //       from this software without specific prior written permission.
      15             : //
      16             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      17             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      18             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      19             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      20             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      21             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      22             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      23             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      24             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      25             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      26             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      27             : 
      28             : #ifndef DOUBLE_CONVERSION_DOUBLE_H_
      29             : #define DOUBLE_CONVERSION_DOUBLE_H_
      30             : 
      31             : #include "diy-fp.h"
      32             : 
      33             : namespace double_conversion {
      34             : 
      35             : // We assume that doubles and uint64_t have the same endianness.
      36          48 : static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
      37          16 : static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
      38           0 : static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
      39           0 : static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
      40             : 
      41             : // Helper functions for doubles.
      42             : class Double {
      43             :  public:
      44             :   static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000);
      45             :   static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000);
      46             :   static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
      47             :   static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000);
      48             :   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
      49             :   static const int kSignificandSize = 53;
      50             : 
      51             :   Double() : d64_(0) {}
      52          48 :   explicit Double(double d) : d64_(double_to_uint64(d)) {}
      53           0 :   explicit Double(uint64_t d64) : d64_(d64) {}
      54           0 :   explicit Double(DiyFp diy_fp)
      55           0 :     : d64_(DiyFpToUint64(diy_fp)) {}
      56             : 
      57             :   // The value encoded by this Double must be greater or equal to +0.0.
      58             :   // It must not be special (infinity, or NaN).
      59           8 :   DiyFp AsDiyFp() const {
      60           8 :     ASSERT(Sign() > 0);
      61           8 :     ASSERT(!IsSpecial());
      62           8 :     return DiyFp(Significand(), Exponent());
      63             :   }
      64             : 
      65             :   // The value encoded by this Double must be strictly greater than 0.
      66           8 :   DiyFp AsNormalizedDiyFp() const {
      67           8 :     ASSERT(value() > 0.0);
      68           8 :     uint64_t f = Significand();
      69           8 :     int e = Exponent();
      70             : 
      71             :     // The current double could be a denormal.
      72           8 :     while ((f & kHiddenBit) == 0) {
      73           0 :       f <<= 1;
      74           0 :       e--;
      75             :     }
      76             :     // Do the final shifts in one go.
      77           8 :     f <<= DiyFp::kSignificandSize - kSignificandSize;
      78           8 :     e -= DiyFp::kSignificandSize - kSignificandSize;
      79           8 :     return DiyFp(f, e);
      80             :   }
      81             : 
      82             :   // Returns the double's bit as uint64.
      83         120 :   uint64_t AsUint64() const {
      84         120 :     return d64_;
      85             :   }
      86             : 
      87             :   // Returns the next greater double. Returns +infinity on input +infinity.
      88           0 :   double NextDouble() const {
      89           0 :     if (d64_ == kInfinity) return Double(kInfinity).value();
      90           0 :     if (Sign() < 0 && Significand() == 0) {
      91             :       // -0.0
      92           0 :       return 0.0;
      93             :     }
      94           0 :     if (Sign() < 0) {
      95           0 :       return Double(d64_ - 1).value();
      96             :     } else {
      97           0 :       return Double(d64_ + 1).value();
      98             :     }
      99             :   }
     100             : 
     101           0 :   double PreviousDouble() const {
     102           0 :     if (d64_ == (kInfinity | kSignMask)) return -Infinity();
     103           0 :     if (Sign() < 0) {
     104           0 :       return Double(d64_ + 1).value();
     105             :     } else {
     106           0 :       if (Significand() == 0) return -0.0;
     107           0 :       return Double(d64_ - 1).value();
     108             :     }
     109             :   }
     110             : 
     111          16 :   int Exponent() const {
     112          16 :     if (IsDenormal()) return kDenormalExponent;
     113             : 
     114          16 :     uint64_t d64 = AsUint64();
     115             :     int biased_e =
     116          16 :         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
     117          16 :     return biased_e - kExponentBias;
     118             :   }
     119             : 
     120          16 :   uint64_t Significand() const {
     121          16 :     uint64_t d64 = AsUint64();
     122          16 :     uint64_t significand = d64 & kSignificandMask;
     123          16 :     if (!IsDenormal()) {
     124          16 :       return significand + kHiddenBit;
     125             :     } else {
     126           0 :       return significand;
     127             :     }
     128             :   }
     129             : 
     130             :   // Returns true if the double is a denormal.
     131          32 :   bool IsDenormal() const {
     132          32 :     uint64_t d64 = AsUint64();
     133          32 :     return (d64 & kExponentMask) == 0;
     134             :   }
     135             : 
     136             :   // We consider denormals not to be special.
     137             :   // Hence only Infinity and NaN are special.
     138          32 :   bool IsSpecial() const {
     139          32 :     uint64_t d64 = AsUint64();
     140          32 :     return (d64 & kExponentMask) == kExponentMask;
     141             :   }
     142             : 
     143           0 :   bool IsNan() const {
     144           0 :     uint64_t d64 = AsUint64();
     145           0 :     return ((d64 & kExponentMask) == kExponentMask) &&
     146           0 :         ((d64 & kSignificandMask) != 0);
     147             :   }
     148             : 
     149           0 :   bool IsInfinite() const {
     150           0 :     uint64_t d64 = AsUint64();
     151           0 :     return ((d64 & kExponentMask) == kExponentMask) &&
     152           0 :         ((d64 & kSignificandMask) == 0);
     153             :   }
     154             : 
     155          16 :   int Sign() const {
     156          16 :     uint64_t d64 = AsUint64();
     157          16 :     return (d64 & kSignMask) == 0? 1: -1;
     158             :   }
     159             : 
     160             :   // Precondition: the value encoded by this Double must be greater or equal
     161             :   // than +0.0.
     162           0 :   DiyFp UpperBoundary() const {
     163           0 :     ASSERT(Sign() > 0);
     164           0 :     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
     165             :   }
     166             : 
     167             :   // Computes the two boundaries of this.
     168             :   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
     169             :   // exponent as m_plus.
     170             :   // Precondition: the value encoded by this Double must be greater than 0.
     171           8 :   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
     172           8 :     ASSERT(value() > 0.0);
     173           8 :     DiyFp v = this->AsDiyFp();
     174           8 :     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
     175           8 :     DiyFp m_minus;
     176           8 :     if (LowerBoundaryIsCloser()) {
     177           0 :       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
     178             :     } else {
     179           8 :       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
     180             :     }
     181           8 :     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
     182           8 :     m_minus.set_e(m_plus.e());
     183           8 :     *out_m_plus = m_plus;
     184           8 :     *out_m_minus = m_minus;
     185           8 :   }
     186             : 
     187           8 :   bool LowerBoundaryIsCloser() const {
     188             :     // The boundary is closer if the significand is of the form f == 2^p-1 then
     189             :     // the lower boundary is closer.
     190             :     // Think of v = 1000e10 and v- = 9999e9.
     191             :     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
     192             :     // at a distance of 1e8.
     193             :     // The only exception is for the smallest normal: the largest denormal is
     194             :     // at the same distance as its successor.
     195             :     // Note: denormals have the same exponent as the smallest normals.
     196           8 :     bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
     197           8 :     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
     198             :   }
     199             : 
     200          16 :   double value() const { return uint64_to_double(d64_); }
     201             : 
     202             :   // Returns the significand size for a given order of magnitude.
     203             :   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
     204             :   // This function returns the number of significant binary digits v will have
     205             :   // once it's encoded into a double. In almost all cases this is equal to
     206             :   // kSignificandSize. The only exceptions are denormals. They start with
     207             :   // leading zeroes and their effective significand-size is hence smaller.
     208           0 :   static int SignificandSizeForOrderOfMagnitude(int order) {
     209           0 :     if (order >= (kDenormalExponent + kSignificandSize)) {
     210           0 :       return kSignificandSize;
     211             :     }
     212           0 :     if (order <= kDenormalExponent) return 0;
     213           0 :     return order - kDenormalExponent;
     214             :   }
     215             : 
     216           0 :   static double Infinity() {
     217           0 :     return Double(kInfinity).value();
     218             :   }
     219             : 
     220           0 :   static double NaN() {
     221           0 :     return Double(kNaN).value();
     222             :   }
     223             : 
     224             :  private:
     225             :   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
     226             :   static const int kDenormalExponent = -kExponentBias + 1;
     227             :   static const int kMaxExponent = 0x7FF - kExponentBias;
     228             :   static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000);
     229             :   static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000);
     230             : 
     231             :   const uint64_t d64_;
     232             : 
     233           0 :   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
     234           0 :     uint64_t significand = diy_fp.f();
     235           0 :     int exponent = diy_fp.e();
     236           0 :     while (significand > kHiddenBit + kSignificandMask) {
     237           0 :       significand >>= 1;
     238           0 :       exponent++;
     239             :     }
     240           0 :     if (exponent >= kMaxExponent) {
     241           0 :       return kInfinity;
     242             :     }
     243           0 :     if (exponent < kDenormalExponent) {
     244           0 :       return 0;
     245             :     }
     246           0 :     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
     247           0 :       significand <<= 1;
     248           0 :       exponent--;
     249             :     }
     250             :     uint64_t biased_exponent;
     251           0 :     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
     252           0 :       biased_exponent = 0;
     253             :     } else {
     254           0 :       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
     255             :     }
     256           0 :     return (significand & kSignificandMask) |
     257           0 :         (biased_exponent << kPhysicalSignificandSize);
     258             :   }
     259             : 
     260             :   DISALLOW_COPY_AND_ASSIGN(Double);
     261             : };
     262             : 
     263             : class Single {
     264             :  public:
     265             :   static const uint32_t kSignMask = 0x80000000;
     266             :   static const uint32_t kExponentMask = 0x7F800000;
     267             :   static const uint32_t kSignificandMask = 0x007FFFFF;
     268             :   static const uint32_t kHiddenBit = 0x00800000;
     269             :   static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
     270             :   static const int kSignificandSize = 24;
     271             : 
     272             :   Single() : d32_(0) {}
     273           0 :   explicit Single(float f) : d32_(float_to_uint32(f)) {}
     274             :   explicit Single(uint32_t d32) : d32_(d32) {}
     275             : 
     276             :   // The value encoded by this Single must be greater or equal to +0.0.
     277             :   // It must not be special (infinity, or NaN).
     278           0 :   DiyFp AsDiyFp() const {
     279           0 :     ASSERT(Sign() > 0);
     280           0 :     ASSERT(!IsSpecial());
     281           0 :     return DiyFp(Significand(), Exponent());
     282             :   }
     283             : 
     284             :   // Returns the single's bit as uint64.
     285           0 :   uint32_t AsUint32() const {
     286           0 :     return d32_;
     287             :   }
     288             : 
     289           0 :   int Exponent() const {
     290           0 :     if (IsDenormal()) return kDenormalExponent;
     291             : 
     292           0 :     uint32_t d32 = AsUint32();
     293             :     int biased_e =
     294           0 :         static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
     295           0 :     return biased_e - kExponentBias;
     296             :   }
     297             : 
     298           0 :   uint32_t Significand() const {
     299           0 :     uint32_t d32 = AsUint32();
     300           0 :     uint32_t significand = d32 & kSignificandMask;
     301           0 :     if (!IsDenormal()) {
     302           0 :       return significand + kHiddenBit;
     303             :     } else {
     304           0 :       return significand;
     305             :     }
     306             :   }
     307             : 
     308             :   // Returns true if the single is a denormal.
     309           0 :   bool IsDenormal() const {
     310           0 :     uint32_t d32 = AsUint32();
     311           0 :     return (d32 & kExponentMask) == 0;
     312             :   }
     313             : 
     314             :   // We consider denormals not to be special.
     315             :   // Hence only Infinity and NaN are special.
     316           0 :   bool IsSpecial() const {
     317           0 :     uint32_t d32 = AsUint32();
     318           0 :     return (d32 & kExponentMask) == kExponentMask;
     319             :   }
     320             : 
     321             :   bool IsNan() const {
     322             :     uint32_t d32 = AsUint32();
     323             :     return ((d32 & kExponentMask) == kExponentMask) &&
     324             :         ((d32 & kSignificandMask) != 0);
     325             :   }
     326             : 
     327             :   bool IsInfinite() const {
     328             :     uint32_t d32 = AsUint32();
     329             :     return ((d32 & kExponentMask) == kExponentMask) &&
     330             :         ((d32 & kSignificandMask) == 0);
     331             :   }
     332             : 
     333           0 :   int Sign() const {
     334           0 :     uint32_t d32 = AsUint32();
     335           0 :     return (d32 & kSignMask) == 0? 1: -1;
     336             :   }
     337             : 
     338             :   // Computes the two boundaries of this.
     339             :   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
     340             :   // exponent as m_plus.
     341             :   // Precondition: the value encoded by this Single must be greater than 0.
     342           0 :   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
     343           0 :     ASSERT(value() > 0.0);
     344           0 :     DiyFp v = this->AsDiyFp();
     345           0 :     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
     346           0 :     DiyFp m_minus;
     347           0 :     if (LowerBoundaryIsCloser()) {
     348           0 :       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
     349             :     } else {
     350           0 :       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
     351             :     }
     352           0 :     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
     353           0 :     m_minus.set_e(m_plus.e());
     354           0 :     *out_m_plus = m_plus;
     355           0 :     *out_m_minus = m_minus;
     356           0 :   }
     357             : 
     358             :   // Precondition: the value encoded by this Single must be greater or equal
     359             :   // than +0.0.
     360           0 :   DiyFp UpperBoundary() const {
     361           0 :     ASSERT(Sign() > 0);
     362           0 :     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
     363             :   }
     364             : 
     365           0 :   bool LowerBoundaryIsCloser() const {
     366             :     // The boundary is closer if the significand is of the form f == 2^p-1 then
     367             :     // the lower boundary is closer.
     368             :     // Think of v = 1000e10 and v- = 9999e9.
     369             :     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
     370             :     // at a distance of 1e8.
     371             :     // The only exception is for the smallest normal: the largest denormal is
     372             :     // at the same distance as its successor.
     373             :     // Note: denormals have the same exponent as the smallest normals.
     374           0 :     bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
     375           0 :     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
     376             :   }
     377             : 
     378           0 :   float value() const { return uint32_to_float(d32_); }
     379             : 
     380             :   static float Infinity() {
     381             :     return Single(kInfinity).value();
     382             :   }
     383             : 
     384             :   static float NaN() {
     385             :     return Single(kNaN).value();
     386             :   }
     387             : 
     388             :  private:
     389             :   static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
     390             :   static const int kDenormalExponent = -kExponentBias + 1;
     391             :   static const int kMaxExponent = 0xFF - kExponentBias;
     392             :   static const uint32_t kInfinity = 0x7F800000;
     393             :   static const uint32_t kNaN = 0x7FC00000;
     394             : 
     395             :   const uint32_t d32_;
     396             : 
     397             :   DISALLOW_COPY_AND_ASSIGN(Single);
     398             : };
     399             : 
     400             : }  // namespace double_conversion
     401             : 
     402             : #endif  // DOUBLE_CONVERSION_DOUBLE_H_

Generated by: LCOV version 1.13