Line data Source code
1 :
2 : /* @(#)e_acos.c 1.3 95/01/18 */
3 : /*
4 : * ====================================================
5 : * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 : *
7 : * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 : * Permission to use, copy, modify, and distribute this
9 : * software is freely granted, provided that this notice
10 : * is preserved.
11 : * ====================================================
12 : */
13 :
14 : //#include <sys/cdefs.h>
15 : //__FBSDID("$FreeBSD$");
16 :
17 : /* __ieee754_acos(x)
18 : * Method :
19 : * acos(x) = pi/2 - asin(x)
20 : * acos(-x) = pi/2 + asin(x)
21 : * For |x|<=0.5
22 : * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
23 : * For x>0.5
24 : * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
25 : * = 2asin(sqrt((1-x)/2))
26 : * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
27 : * = 2f + (2c + 2s*z*R(z))
28 : * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
29 : * for f so that f+c ~ sqrt(z).
30 : * For x<-0.5
31 : * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
32 : * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
33 : *
34 : * Special cases:
35 : * if x is NaN, return x itself;
36 : * if |x|>1, return NaN with invalid signal.
37 : *
38 : * Function needed: sqrt
39 : */
40 :
41 : #include <float.h>
42 :
43 : #include "math_private.h"
44 :
45 : static const double
46 : one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
47 : pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
48 : pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
49 : static volatile double
50 : pio2_lo = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
51 : static const double
52 : pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
53 : pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
54 : pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
55 : pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
56 : pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
57 : pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
58 : qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
59 : qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
60 : qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
61 : qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
62 :
63 : double
64 0 : __ieee754_acos(double x)
65 : {
66 : double z,p,q,r,w,s,c,df;
67 : int32_t hx,ix;
68 0 : GET_HIGH_WORD(hx,x);
69 0 : ix = hx&0x7fffffff;
70 0 : if(ix>=0x3ff00000) { /* |x| >= 1 */
71 : u_int32_t lx;
72 0 : GET_LOW_WORD(lx,x);
73 0 : if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
74 0 : if(hx>0) return 0.0; /* acos(1) = 0 */
75 0 : else return pi+2.0*pio2_lo; /* acos(-1)= pi */
76 : }
77 0 : return (x-x)/(x-x); /* acos(|x|>1) is NaN */
78 : }
79 0 : if(ix<0x3fe00000) { /* |x| < 0.5 */
80 0 : if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
81 0 : z = x*x;
82 0 : p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
83 0 : q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
84 0 : r = p/q;
85 0 : return pio2_hi - (x - (pio2_lo-x*r));
86 0 : } else if (hx<0) { /* x < -0.5 */
87 0 : z = (one+x)*0.5;
88 0 : p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
89 0 : q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
90 0 : s = sqrt(z);
91 0 : r = p/q;
92 0 : w = r*s-pio2_lo;
93 0 : return pi - 2.0*(s+w);
94 : } else { /* x > 0.5 */
95 0 : z = (one-x)*0.5;
96 0 : s = sqrt(z);
97 0 : df = s;
98 0 : SET_LOW_WORD(df,0);
99 0 : c = (z-df*df)/(s+df);
100 0 : p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
101 0 : q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
102 0 : r = p/q;
103 0 : w = r*s+c;
104 0 : return 2.0*(df+w);
105 : }
106 : }
|