Line data Source code
1 :
2 : /* @(#)e_asin.c 1.3 95/01/18 */
3 : /*
4 : * ====================================================
5 : * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 : *
7 : * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 : * Permission to use, copy, modify, and distribute this
9 : * software is freely granted, provided that this notice
10 : * is preserved.
11 : * ====================================================
12 : */
13 :
14 : //#include <sys/cdefs.h>
15 : //__FBSDID("$FreeBSD$");
16 :
17 : /* __ieee754_asin(x)
18 : * Method :
19 : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
20 : * we approximate asin(x) on [0,0.5] by
21 : * asin(x) = x + x*x^2*R(x^2)
22 : * where
23 : * R(x^2) is a rational approximation of (asin(x)-x)/x^3
24 : * and its remez error is bounded by
25 : * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
26 : *
27 : * For x in [0.5,1]
28 : * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
29 : * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
30 : * then for x>0.98
31 : * asin(x) = pi/2 - 2*(s+s*z*R(z))
32 : * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
33 : * For x<=0.98, let pio4_hi = pio2_hi/2, then
34 : * f = hi part of s;
35 : * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
36 : * and
37 : * asin(x) = pi/2 - 2*(s+s*z*R(z))
38 : * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
39 : * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
40 : *
41 : * Special cases:
42 : * if x is NaN, return x itself;
43 : * if |x|>1, return NaN with invalid signal.
44 : *
45 : */
46 :
47 : #include <float.h>
48 :
49 : #include "math_private.h"
50 :
51 : static const double
52 : one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
53 : huge = 1.000e+300,
54 : pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
55 : pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
56 : pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
57 : /* coefficient for R(x^2) */
58 : pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
59 : pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
60 : pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
61 : pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
62 : pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
63 : pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
64 : qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
65 : qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
66 : qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
67 : qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
68 :
69 : double
70 0 : __ieee754_asin(double x)
71 : {
72 0 : double t=0.0,w,p,q,c,r,s;
73 : int32_t hx,ix;
74 0 : GET_HIGH_WORD(hx,x);
75 0 : ix = hx&0x7fffffff;
76 0 : if(ix>= 0x3ff00000) { /* |x|>= 1 */
77 : u_int32_t lx;
78 0 : GET_LOW_WORD(lx,x);
79 0 : if(((ix-0x3ff00000)|lx)==0)
80 : /* asin(1)=+-pi/2 with inexact */
81 0 : return x*pio2_hi+x*pio2_lo;
82 0 : return (x-x)/(x-x); /* asin(|x|>1) is NaN */
83 0 : } else if (ix<0x3fe00000) { /* |x|<0.5 */
84 0 : if(ix<0x3e500000) { /* if |x| < 2**-26 */
85 0 : if(huge+x>one) return x;/* return x with inexact if x!=0*/
86 : }
87 0 : t = x*x;
88 0 : p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
89 0 : q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
90 0 : w = p/q;
91 0 : return x+x*w;
92 : }
93 : /* 1> |x|>= 0.5 */
94 0 : w = one-fabs(x);
95 0 : t = w*0.5;
96 0 : p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
97 0 : q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
98 0 : s = sqrt(t);
99 0 : if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
100 0 : w = p/q;
101 0 : t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
102 : } else {
103 0 : w = s;
104 0 : SET_LOW_WORD(w,0);
105 0 : c = (t-w*w)/(s+w);
106 0 : r = p/q;
107 0 : p = 2.0*s*r-(pio2_lo-2.0*c);
108 0 : q = pio4_hi-2.0*w;
109 0 : t = pio4_hi-(p-q);
110 : }
111 0 : if(hx>0) return t; else return -t;
112 : }
|