LCOV - code coverage report
Current view: top level - modules/fdlibm/src - e_exp.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 38 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : 
       2             : /* @(#)e_exp.c 1.6 04/04/22 */
       3             : /*
       4             :  * ====================================================
       5             :  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
       6             :  *
       7             :  * Permission to use, copy, modify, and distribute this
       8             :  * software is freely granted, provided that this notice 
       9             :  * is preserved.
      10             :  * ====================================================
      11             :  */
      12             : 
      13             : //#include <sys/cdefs.h>
      14             : //__FBSDID("$FreeBSD$");
      15             : 
      16             : /* __ieee754_exp(x)
      17             :  * Returns the exponential of x.
      18             :  *
      19             :  * Method
      20             :  *   1. Argument reduction:
      21             :  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
      22             :  *      Given x, find r and integer k such that
      23             :  *
      24             :  *               x = k*ln2 + r,  |r| <= 0.5*ln2.  
      25             :  *
      26             :  *      Here r will be represented as r = hi-lo for better 
      27             :  *      accuracy.
      28             :  *
      29             :  *   2. Approximation of exp(r) by a special rational function on
      30             :  *      the interval [0,0.34658]:
      31             :  *      Write
      32             :  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
      33             :  *      We use a special Remes algorithm on [0,0.34658] to generate 
      34             :  *      a polynomial of degree 5 to approximate R. The maximum error 
      35             :  *      of this polynomial approximation is bounded by 2**-59. In
      36             :  *      other words,
      37             :  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
      38             :  *      (where z=r*r, and the values of P1 to P5 are listed below)
      39             :  *      and
      40             :  *          |                  5          |     -59
      41             :  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2 
      42             :  *          |                             |
      43             :  *      The computation of exp(r) thus becomes
      44             :  *                             2*r
      45             :  *              exp(r) = 1 + -------
      46             :  *                            R - r
      47             :  *                                 r*R1(r)      
      48             :  *                     = 1 + r + ----------- (for better accuracy)
      49             :  *                                2 - R1(r)
      50             :  *      where
      51             :  *                               2       4             10
      52             :  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
      53             :  *      
      54             :  *   3. Scale back to obtain exp(x):
      55             :  *      From step 1, we have
      56             :  *         exp(x) = 2^k * exp(r)
      57             :  *
      58             :  * Special cases:
      59             :  *      exp(INF) is INF, exp(NaN) is NaN;
      60             :  *      exp(-INF) is 0, and
      61             :  *      for finite argument, only exp(0)=1 is exact.
      62             :  *
      63             :  * Accuracy:
      64             :  *      according to an error analysis, the error is always less than
      65             :  *      1 ulp (unit in the last place).
      66             :  *
      67             :  * Misc. info.
      68             :  *      For IEEE double 
      69             :  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
      70             :  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
      71             :  *
      72             :  * Constants:
      73             :  * The hexadecimal values are the intended ones for the following 
      74             :  * constants. The decimal values may be used, provided that the 
      75             :  * compiler will convert from decimal to binary accurately enough
      76             :  * to produce the hexadecimal values shown.
      77             :  */
      78             : 
      79             : #include <float.h>
      80             : 
      81             : #include "math_private.h"
      82             : 
      83             : static const double
      84             : one     = 1.0,
      85             : halF[2] = {0.5,-0.5,},
      86             : o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
      87             : u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
      88             : ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
      89             :              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
      90             : ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
      91             :              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
      92             : invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
      93             : P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
      94             : P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
      95             : P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
      96             : P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
      97             : P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
      98             : 
      99             : static volatile double
     100             : huge    = 1.0e+300,
     101             : twom1000= 9.33263618503218878990e-302;     /* 2**-1000=0x01700000,0*/
     102             : 
     103             : double
     104           0 : __ieee754_exp(double x) /* default IEEE double exp */
     105             : {
     106           0 :         double y,hi=0.0,lo=0.0,c,t,twopk;
     107           0 :         int32_t k=0,xsb;
     108             :         u_int32_t hx;
     109             : 
     110           0 :         GET_HIGH_WORD(hx,x);
     111           0 :         xsb = (hx>>31)&1;             /* sign bit of x */
     112           0 :         hx &= 0x7fffffff;           /* high word of |x| */
     113             : 
     114             :     /* filter out non-finite argument */
     115           0 :         if(hx >= 0x40862E42) {                       /* if |x|>=709.78... */
     116           0 :             if(hx>=0x7ff00000) {
     117             :                 u_int32_t lx;
     118           0 :                 GET_LOW_WORD(lx,x);
     119           0 :                 if(((hx&0xfffff)|lx)!=0)
     120           0 :                      return x+x;                /* NaN */
     121           0 :                 else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
     122             :             }
     123           0 :             if(x > o_threshold) return huge*huge; /* overflow */
     124           0 :             if(x < u_threshold) return twom1000*twom1000; /* underflow */
     125             :         }
     126             : 
     127             :     /* argument reduction */
     128           0 :         if(hx > 0x3fd62e42) {                /* if  |x| > 0.5 ln2 */ 
     129           0 :             if(hx < 0x3FF0A2B2) {    /* and |x| < 1.5 ln2 */
     130           0 :                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
     131             :             } else {
     132           0 :                 k  = (int)(invln2*x+halF[xsb]);
     133           0 :                 t  = k;
     134           0 :                 hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
     135           0 :                 lo = t*ln2LO[0];
     136             :             }
     137           0 :             STRICT_ASSIGN(double, x, hi - lo);
     138             :         } 
     139           0 :         else if(hx < 0x3e300000)  {  /* when |x|<2**-28 */
     140           0 :             if(huge+x>one) return one+x;/* trigger inexact */
     141             :         }
     142           0 :         else k = 0;
     143             : 
     144             :     /* x is now in primary range */
     145           0 :         t  = x*x;
     146           0 :         if(k >= -1021)
     147           0 :             INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
     148             :         else
     149           0 :             INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
     150           0 :         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
     151           0 :         if(k==0)        return one-((x*c)/(c-2.0)-x); 
     152           0 :         else            y = one-((lo-(x*c)/(2.0-c))-hi);
     153           0 :         if(k >= -1021) {
     154           0 :             if (k==1024) {
     155           0 :                 double const_0x1p1023 = pow(2, 1023);
     156           0 :                 return y*2.0*const_0x1p1023;
     157             :             }
     158           0 :             return y*twopk;
     159             :         } else {
     160           0 :             return y*twopk*twom1000;
     161             :         }
     162             : }

Generated by: LCOV version 1.13