LCOV - code coverage report
Current view: top level - modules/fdlibm/src - e_pow.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 138 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* @(#)e_pow.c 1.5 04/04/22 SMI */
       2             : /*
       3             :  * ====================================================
       4             :  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
       5             :  *
       6             :  * Permission to use, copy, modify, and distribute this
       7             :  * software is freely granted, provided that this notice 
       8             :  * is preserved.
       9             :  * ====================================================
      10             :  */
      11             : 
      12             : //#include <sys/cdefs.h>
      13             : //__FBSDID("$FreeBSD$");
      14             : 
      15             : /* __ieee754_pow(x,y) return x**y
      16             :  *
      17             :  *                    n
      18             :  * Method:  Let x =  2   * (1+f)
      19             :  *      1. Compute and return log2(x) in two pieces:
      20             :  *              log2(x) = w1 + w2,
      21             :  *         where w1 has 53-24 = 29 bit trailing zeros.
      22             :  *      2. Perform y*log2(x) = n+y' by simulating multi-precision 
      23             :  *         arithmetic, where |y'|<=0.5.
      24             :  *      3. Return x**y = 2**n*exp(y'*log2)
      25             :  *
      26             :  * Special cases:
      27             :  *      1.  (anything) ** 0  is 1
      28             :  *      2.  (anything) ** 1  is itself
      29             :  *      3.  (anything) ** NAN is NAN except 1 ** NAN = 1
      30             :  *      4.  NAN ** (anything except 0) is NAN
      31             :  *      5.  +-(|x| > 1) **  +INF is +INF
      32             :  *      6.  +-(|x| > 1) **  -INF is +0
      33             :  *      7.  +-(|x| < 1) **  +INF is +0
      34             :  *      8.  +-(|x| < 1) **  -INF is +INF
      35             :  *      9.  +-1         ** +-INF is 1
      36             :  *      10. +0 ** (+anything except 0, NAN)               is +0
      37             :  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
      38             :  *      12. +0 ** (-anything except 0, NAN)               is +INF
      39             :  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
      40             :  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
      41             :  *      15. +INF ** (+anything except 0,NAN) is +INF
      42             :  *      16. +INF ** (-anything except 0,NAN) is +0
      43             :  *      17. -INF ** (anything)  = -0 ** (-anything)
      44             :  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
      45             :  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
      46             :  *
      47             :  * Accuracy:
      48             :  *      pow(x,y) returns x**y nearly rounded. In particular
      49             :  *                      pow(integer,integer)
      50             :  *      always returns the correct integer provided it is 
      51             :  *      representable.
      52             :  *
      53             :  * Constants :
      54             :  * The hexadecimal values are the intended ones for the following 
      55             :  * constants. The decimal values may be used, provided that the 
      56             :  * compiler will convert from decimal to binary accurately enough 
      57             :  * to produce the hexadecimal values shown.
      58             :  */
      59             : 
      60             : #include "math_private.h"
      61             : 
      62             : static const double
      63             : bp[] = {1.0, 1.5,},
      64             : dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
      65             : dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
      66             : zero    =  0.0,
      67             : one     =  1.0,
      68             : two     =  2.0,
      69             : two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
      70             : huge    =  1.0e300,
      71             : tiny    =  1.0e-300,
      72             :         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
      73             : L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
      74             : L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
      75             : L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
      76             : L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
      77             : L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
      78             : L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
      79             : P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
      80             : P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
      81             : P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
      82             : P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
      83             : P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
      84             : lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
      85             : lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
      86             : lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
      87             : ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
      88             : cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
      89             : cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
      90             : cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
      91             : ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
      92             : ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
      93             : ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
      94             : 
      95             : double
      96           0 : __ieee754_pow(double x, double y)
      97             : {
      98             :         double z,ax,z_h,z_l,p_h,p_l;
      99             :         double y1,t1,t2,r,s,t,u,v,w;
     100             :         int32_t i,j,k,yisint,n;
     101             :         int32_t hx,hy,ix,iy;
     102             :         u_int32_t lx,ly;
     103             : 
     104           0 :         EXTRACT_WORDS(hx,lx,x);
     105           0 :         EXTRACT_WORDS(hy,ly,y);
     106           0 :         ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
     107             : 
     108             :     /* y==zero: x**0 = 1 */
     109           0 :         if((iy|ly)==0) return one;      
     110             : 
     111             :     /* x==1: 1**y = 1, even if y is NaN */
     112           0 :         if (hx==0x3ff00000 && lx == 0) return one;
     113             : 
     114             :     /* y!=zero: result is NaN if either arg is NaN */
     115           0 :         if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
     116           0 :            iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 
     117           0 :                 return (x+0.0)+(y+0.0);
     118             : 
     119             :     /* determine if y is an odd int when x < 0
     120             :      * yisint = 0       ... y is not an integer
     121             :      * yisint = 1       ... y is an odd int
     122             :      * yisint = 2       ... y is an even int
     123             :      */
     124           0 :         yisint  = 0;
     125           0 :         if(hx<0) {   
     126           0 :             if(iy>=0x43400000) yisint = 2; /* even integer y */
     127           0 :             else if(iy>=0x3ff00000) {
     128           0 :                 k = (iy>>20)-0x3ff;          /* exponent */
     129           0 :                 if(k>20) {
     130           0 :                     j = ly>>(52-k);
     131           0 :                     if((j<<(52-k))==ly) yisint = 2-(j&1);
     132           0 :                 } else if(ly==0) {
     133           0 :                     j = iy>>(20-k);
     134           0 :                     if((j<<(20-k))==iy) yisint = 2-(j&1);
     135             :                 }
     136             :             }           
     137             :         } 
     138             : 
     139             :     /* special value of y */
     140           0 :         if(ly==0) {     
     141           0 :             if (iy==0x7ff00000) {       /* y is +-inf */
     142           0 :                 if(((ix-0x3ff00000)|lx)==0)
     143           0 :                     return  one;        /* (-1)**+-inf is 1 */
     144           0 :                 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
     145           0 :                     return (hy>=0)? y: zero;
     146             :                 else                    /* (|x|<1)**-,+inf = inf,0 */
     147           0 :                     return (hy<0)?-y: zero;
     148             :             } 
     149           0 :             if(iy==0x3ff00000) {        /* y is  +-1 */
     150           0 :                 if(hy<0) return one/x; else return x;
     151             :             }
     152           0 :             if(hy==0x40000000) return x*x; /* y is  2 */
     153           0 :             if(hy==0x3fe00000) {        /* y is  0.5 */
     154           0 :                 if(hx>=0)    /* x >= +0 */
     155           0 :                 return sqrt(x); 
     156             :             }
     157             :         }
     158             : 
     159           0 :         ax   = fabs(x);
     160             :     /* special value of x */
     161           0 :         if(lx==0) {
     162           0 :             if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
     163           0 :                 z = ax;                 /*x is +-0,+-inf,+-1*/
     164           0 :                 if(hy<0) z = one/z;  /* z = (1/|x|) */
     165           0 :                 if(hx<0) {
     166           0 :                     if(((ix-0x3ff00000)|yisint)==0) {
     167           0 :                         z = (z-z)/(z-z); /* (-1)**non-int is NaN */
     168           0 :                     } else if(yisint==1) 
     169           0 :                         z = -z;         /* (x<0)**odd = -(|x|**odd) */
     170             :                 }
     171           0 :                 return z;
     172             :             }
     173             :         }
     174             :     
     175             :     /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
     176             :         n = (hx>>31)+1;
     177             :        but ANSI C says a right shift of a signed negative quantity is
     178             :        implementation defined.  */
     179           0 :         n = ((u_int32_t)hx>>31)-1;
     180             : 
     181             :     /* (x<0)**(non-int) is NaN */
     182           0 :         if((n|yisint)==0) return (x-x)/(x-x);
     183             : 
     184           0 :         s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
     185           0 :         if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
     186             : 
     187             :     /* |y| is huge */
     188           0 :         if(iy>0x41e00000) { /* if |y| > 2**31 */
     189           0 :             if(iy>0x43f00000){       /* if |y| > 2**64, must o/uflow */
     190           0 :                 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
     191           0 :                 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
     192             :             }
     193             :         /* over/underflow if x is not close to one */
     194           0 :             if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
     195           0 :             if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
     196             :         /* now |1-x| is tiny <= 2**-20, suffice to compute 
     197             :            log(x) by x-x^2/2+x^3/3-x^4/4 */
     198           0 :             t = ax-one;         /* t has 20 trailing zeros */
     199           0 :             w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
     200           0 :             u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
     201           0 :             v = t*ivln2_l-w*ivln2;
     202           0 :             t1 = u+v;
     203           0 :             SET_LOW_WORD(t1,0);
     204           0 :             t2 = v-(t1-u);
     205             :         } else {
     206             :             double ss,s2,s_h,s_l,t_h,t_l;
     207           0 :             n = 0;
     208             :         /* take care subnormal number */
     209           0 :             if(ix<0x00100000)
     210           0 :                 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
     211           0 :             n  += ((ix)>>20)-0x3ff;
     212           0 :             j  = ix&0x000fffff;
     213             :         /* determine interval */
     214           0 :             ix = j|0x3ff00000;          /* normalize ix */
     215           0 :             if(j<=0x3988E) k=0;              /* |x|<sqrt(3/2) */
     216           0 :             else if(j<0xBB67A) k=1;  /* |x|<sqrt(3)   */
     217           0 :             else {k=0;n+=1;ix -= 0x00100000;}
     218           0 :             SET_HIGH_WORD(ax,ix);
     219             : 
     220             :         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
     221           0 :             u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
     222           0 :             v = one/(ax+bp[k]);
     223           0 :             ss = u*v;
     224           0 :             s_h = ss;
     225           0 :             SET_LOW_WORD(s_h,0);
     226             :         /* t_h=ax+bp[k] High */
     227           0 :             t_h = zero;
     228           0 :             SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
     229           0 :             t_l = ax - (t_h-bp[k]);
     230           0 :             s_l = v*((u-s_h*t_h)-s_h*t_l);
     231             :         /* compute log(ax) */
     232           0 :             s2 = ss*ss;
     233           0 :             r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
     234           0 :             r += s_l*(s_h+ss);
     235           0 :             s2  = s_h*s_h;
     236           0 :             t_h = 3.0+s2+r;
     237           0 :             SET_LOW_WORD(t_h,0);
     238           0 :             t_l = r-((t_h-3.0)-s2);
     239             :         /* u+v = ss*(1+...) */
     240           0 :             u = s_h*t_h;
     241           0 :             v = s_l*t_h+t_l*ss;
     242             :         /* 2/(3log2)*(ss+...) */
     243           0 :             p_h = u+v;
     244           0 :             SET_LOW_WORD(p_h,0);
     245           0 :             p_l = v-(p_h-u);
     246           0 :             z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
     247           0 :             z_l = cp_l*p_h+p_l*cp+dp_l[k];
     248             :         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
     249           0 :             t = (double)n;
     250           0 :             t1 = (((z_h+z_l)+dp_h[k])+t);
     251           0 :             SET_LOW_WORD(t1,0);
     252           0 :             t2 = z_l-(((t1-t)-dp_h[k])-z_h);
     253             :         }
     254             : 
     255             :     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
     256           0 :         y1  = y;
     257           0 :         SET_LOW_WORD(y1,0);
     258           0 :         p_l = (y-y1)*t1+y*t2;
     259           0 :         p_h = y1*t1;
     260           0 :         z = p_l+p_h;
     261           0 :         EXTRACT_WORDS(j,i,z);
     262           0 :         if (j>=0x40900000) {                         /* z >= 1024 */
     263           0 :             if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
     264           0 :                 return s*huge*huge;                     /* overflow */
     265             :             else {
     266           0 :                 if(p_l+ovt>z-p_h) return s*huge*huge;        /* overflow */
     267             :             }
     268           0 :         } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
     269           0 :             if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
     270           0 :                 return s*tiny*tiny;             /* underflow */
     271             :             else {
     272           0 :                 if(p_l<=z-p_h) return s*tiny*tiny;   /* underflow */
     273             :             }
     274             :         }
     275             :     /*
     276             :      * compute 2**(p_h+p_l)
     277             :      */
     278           0 :         i = j&0x7fffffff;
     279           0 :         k = (i>>20)-0x3ff;
     280           0 :         n = 0;
     281           0 :         if(i>0x3fe00000) {           /* if |z| > 0.5, set n = [z+0.5] */
     282           0 :             n = j+(0x00100000>>(k+1));
     283           0 :             k = ((n&0x7fffffff)>>20)-0x3ff;   /* new k for n */
     284           0 :             t = zero;
     285           0 :             SET_HIGH_WORD(t,n&~(0x000fffff>>k));
     286           0 :             n = ((n&0x000fffff)|0x00100000)>>(20-k);
     287           0 :             if(j<0) n = -n;
     288           0 :             p_h -= t;
     289             :         } 
     290           0 :         t = p_l+p_h;
     291           0 :         SET_LOW_WORD(t,0);
     292           0 :         u = t*lg2_h;
     293           0 :         v = (p_l-(t-p_h))*lg2+t*lg2_l;
     294           0 :         z = u+v;
     295           0 :         w = v-(z-u);
     296           0 :         t  = z*z;
     297           0 :         t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
     298           0 :         r  = (z*t1)/(t1-two)-(w+z*w);
     299           0 :         z  = one-(r-z);
     300           0 :         GET_HIGH_WORD(j,z);
     301           0 :         j += (n<<20);
     302           0 :         if((j>>20)<=0) z = scalbn(z,n);        /* subnormal output */
     303           0 :         else SET_HIGH_WORD(z,j);
     304           0 :         return s*z;
     305             : }

Generated by: LCOV version 1.13