Line data Source code
1 : /* @(#)s_atan.c 5.1 93/09/24 */
2 : /*
3 : * ====================================================
4 : * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 : *
6 : * Developed at SunPro, a Sun Microsystems, Inc. business.
7 : * Permission to use, copy, modify, and distribute this
8 : * software is freely granted, provided that this notice
9 : * is preserved.
10 : * ====================================================
11 : */
12 :
13 : //#include <sys/cdefs.h>
14 : //__FBSDID("$FreeBSD$");
15 :
16 : /* atan(x)
17 : * Method
18 : * 1. Reduce x to positive by atan(x) = -atan(-x).
19 : * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
20 : * is further reduced to one of the following intervals and the
21 : * arctangent of t is evaluated by the corresponding formula:
22 : *
23 : * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
24 : * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
25 : * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
26 : * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
27 : * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
28 : *
29 : * Constants:
30 : * The hexadecimal values are the intended ones for the following
31 : * constants. The decimal values may be used, provided that the
32 : * compiler will convert from decimal to binary accurately enough
33 : * to produce the hexadecimal values shown.
34 : */
35 :
36 : #include <float.h>
37 :
38 : #include "math_private.h"
39 :
40 : static const double atanhi[] = {
41 : 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
42 : 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
43 : 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
44 : 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
45 : };
46 :
47 : static const double atanlo[] = {
48 : 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
49 : 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
50 : 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
51 : 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
52 : };
53 :
54 : static const double aT[] = {
55 : 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
56 : -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
57 : 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
58 : -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
59 : 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
60 : -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
61 : 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
62 : -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
63 : 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
64 : -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
65 : 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
66 : };
67 :
68 : static const double
69 : one = 1.0,
70 : huge = 1.0e300;
71 :
72 : double
73 0 : atan(double x)
74 : {
75 : double w,s1,s2,z;
76 : int32_t ix,hx,id;
77 :
78 0 : GET_HIGH_WORD(hx,x);
79 0 : ix = hx&0x7fffffff;
80 0 : if(ix>=0x44100000) { /* if |x| >= 2^66 */
81 : u_int32_t low;
82 0 : GET_LOW_WORD(low,x);
83 0 : if(ix>0x7ff00000||
84 0 : (ix==0x7ff00000&&(low!=0)))
85 0 : return x+x; /* NaN */
86 0 : if(hx>0) return atanhi[3]+*(volatile double *)&atanlo[3];
87 0 : else return -atanhi[3]-*(volatile double *)&atanlo[3];
88 0 : } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
89 0 : if (ix < 0x3e400000) { /* |x| < 2^-27 */
90 0 : if(huge+x>one) return x; /* raise inexact */
91 : }
92 0 : id = -1;
93 : } else {
94 0 : x = fabs(x);
95 0 : if (ix < 0x3ff30000) { /* |x| < 1.1875 */
96 0 : if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
97 0 : id = 0; x = (2.0*x-one)/(2.0+x);
98 : } else { /* 11/16<=|x|< 19/16 */
99 0 : id = 1; x = (x-one)/(x+one);
100 : }
101 : } else {
102 0 : if (ix < 0x40038000) { /* |x| < 2.4375 */
103 0 : id = 2; x = (x-1.5)/(one+1.5*x);
104 : } else { /* 2.4375 <= |x| < 2^66 */
105 0 : id = 3; x = -1.0/x;
106 : }
107 : }}
108 : /* end of argument reduction */
109 0 : z = x*x;
110 0 : w = z*z;
111 : /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
112 0 : s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
113 0 : s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
114 0 : if (id<0) return x - x*(s1+s2);
115 : else {
116 0 : z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
117 0 : return (hx<0)? -z:z;
118 : }
119 : }
|