Line data Source code
1 : /* @(#)s_cbrt.c 5.1 93/09/24 */
2 : /*
3 : * ====================================================
4 : * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 : *
6 : * Developed at SunPro, a Sun Microsystems, Inc. business.
7 : * Permission to use, copy, modify, and distribute this
8 : * software is freely granted, provided that this notice
9 : * is preserved.
10 : * ====================================================
11 : *
12 : * Optimized by Bruce D. Evans.
13 : */
14 :
15 : //#include <sys/cdefs.h>
16 : //__FBSDID("$FreeBSD$");
17 :
18 : #include "math_private.h"
19 :
20 : /* cbrt(x)
21 : * Return cube root of x
22 : */
23 : static const u_int32_t
24 : B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
25 : B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
26 :
27 : /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
28 : static const double
29 : P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
30 : P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
31 : P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
32 : P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
33 : P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
34 :
35 : double
36 0 : cbrt(double x)
37 : {
38 : int32_t hx;
39 : union {
40 : double value;
41 : uint64_t bits;
42 : } u;
43 0 : double r,s,t=0.0,w;
44 : u_int32_t sign;
45 : u_int32_t high,low;
46 :
47 0 : EXTRACT_WORDS(hx,low,x);
48 0 : sign=hx&0x80000000; /* sign= sign(x) */
49 0 : hx ^=sign;
50 0 : if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
51 :
52 : /*
53 : * Rough cbrt to 5 bits:
54 : * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
55 : * where e is integral and >= 0, m is real and in [0, 1), and "/" and
56 : * "%" are integer division and modulus with rounding towards minus
57 : * infinity. The RHS is always >= the LHS and has a maximum relative
58 : * error of about 1 in 16. Adding a bias of -0.03306235651 to the
59 : * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
60 : * floating point representation, for finite positive normal values,
61 : * ordinary integer division of the value in bits magically gives
62 : * almost exactly the RHS of the above provided we first subtract the
63 : * exponent bias (1023 for doubles) and later add it back. We do the
64 : * subtraction virtually to keep e >= 0 so that ordinary integer
65 : * division rounds towards minus infinity; this is also efficient.
66 : */
67 0 : if(hx<0x00100000) { /* zero or subnormal? */
68 0 : if((hx|low)==0)
69 0 : return(x); /* cbrt(0) is itself */
70 0 : SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
71 0 : t*=x;
72 0 : GET_HIGH_WORD(high,t);
73 0 : INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
74 : } else
75 0 : INSERT_WORDS(t,sign|(hx/3+B1),0);
76 :
77 : /*
78 : * New cbrt to 23 bits:
79 : * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
80 : * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
81 : * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
82 : * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
83 : * gives us bounds for r = t**3/x.
84 : *
85 : * Try to optimize for parallel evaluation as in k_tanf.c.
86 : */
87 0 : r=(t*t)*(t/x);
88 0 : t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
89 :
90 : /*
91 : * Round t away from zero to 23 bits (sloppily except for ensuring that
92 : * the result is larger in magnitude than cbrt(x) but not much more than
93 : * 2 23-bit ulps larger). With rounding towards zero, the error bound
94 : * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
95 : * in the rounded t, the infinite-precision error in the Newton
96 : * approximation barely affects third digit in the final error
97 : * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
98 : * before the final error is larger than 0.667 ulps.
99 : */
100 0 : u.value=t;
101 0 : u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
102 0 : t=u.value;
103 :
104 : /* one step Newton iteration to 53 bits with error < 0.667 ulps */
105 0 : s=t*t; /* t*t is exact */
106 0 : r=x/s; /* error <= 0.5 ulps; |r| < |t| */
107 0 : w=t+t; /* t+t is exact */
108 0 : r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
109 0 : t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
110 :
111 0 : return(t);
112 : }
|