LCOV - code coverage report
Current view: top level - modules/fdlibm/src - s_expm1.cpp (source / functions) Hit Total Coverage
Test: output.info Lines: 0 60 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 1 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* @(#)s_expm1.c 5.1 93/09/24 */
       2             : /*
       3             :  * ====================================================
       4             :  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5             :  *
       6             :  * Developed at SunPro, a Sun Microsystems, Inc. business.
       7             :  * Permission to use, copy, modify, and distribute this
       8             :  * software is freely granted, provided that this notice
       9             :  * is preserved.
      10             :  * ====================================================
      11             :  */
      12             : 
      13             : //#include <sys/cdefs.h>
      14             : //__FBSDID("$FreeBSD$");
      15             : 
      16             : /* expm1(x)
      17             :  * Returns exp(x)-1, the exponential of x minus 1.
      18             :  *
      19             :  * Method
      20             :  *   1. Argument reduction:
      21             :  *      Given x, find r and integer k such that
      22             :  *
      23             :  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
      24             :  *
      25             :  *      Here a correction term c will be computed to compensate
      26             :  *      the error in r when rounded to a floating-point number.
      27             :  *
      28             :  *   2. Approximating expm1(r) by a special rational function on
      29             :  *      the interval [0,0.34658]:
      30             :  *      Since
      31             :  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
      32             :  *      we define R1(r*r) by
      33             :  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
      34             :  *      That is,
      35             :  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
      36             :  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
      37             :  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
      38             :  *      We use a special Reme algorithm on [0,0.347] to generate
      39             :  *      a polynomial of degree 5 in r*r to approximate R1. The
      40             :  *      maximum error of this polynomial approximation is bounded
      41             :  *      by 2**-61. In other words,
      42             :  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
      43             :  *      where   Q1  =  -1.6666666666666567384E-2,
      44             :  *              Q2  =   3.9682539681370365873E-4,
      45             :  *              Q3  =  -9.9206344733435987357E-6,
      46             :  *              Q4  =   2.5051361420808517002E-7,
      47             :  *              Q5  =  -6.2843505682382617102E-9;
      48             :  *              z   =  r*r,
      49             :  *      with error bounded by
      50             :  *          |                  5           |     -61
      51             :  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
      52             :  *          |                              |
      53             :  *
      54             :  *      expm1(r) = exp(r)-1 is then computed by the following
      55             :  *      specific way which minimize the accumulation rounding error:
      56             :  *                             2     3
      57             :  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
      58             :  *            expm1(r) = r + --- + --- * [--------------------]
      59             :  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
      60             :  *
      61             :  *      To compensate the error in the argument reduction, we use
      62             :  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
      63             :  *                         ~ expm1(r) + c + r*c
      64             :  *      Thus c+r*c will be added in as the correction terms for
      65             :  *      expm1(r+c). Now rearrange the term to avoid optimization
      66             :  *      screw up:
      67             :  *                      (      2                                    2 )
      68             :  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
      69             :  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
      70             :  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
      71             :  *                      (                                             )
      72             :  *
      73             :  *                 = r - E
      74             :  *   3. Scale back to obtain expm1(x):
      75             :  *      From step 1, we have
      76             :  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
      77             :  *                  = or     2^k*[expm1(r) + (1-2^-k)]
      78             :  *   4. Implementation notes:
      79             :  *      (A). To save one multiplication, we scale the coefficient Qi
      80             :  *           to Qi*2^i, and replace z by (x^2)/2.
      81             :  *      (B). To achieve maximum accuracy, we compute expm1(x) by
      82             :  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
      83             :  *        (ii)  if k=0, return r-E
      84             :  *        (iii) if k=-1, return 0.5*(r-E)-0.5
      85             :  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
      86             :  *                     else          return  1.0+2.0*(r-E);
      87             :  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
      88             :  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
      89             :  *        (vii) return 2^k(1-((E+2^-k)-r))
      90             :  *
      91             :  * Special cases:
      92             :  *      expm1(INF) is INF, expm1(NaN) is NaN;
      93             :  *      expm1(-INF) is -1, and
      94             :  *      for finite argument, only expm1(0)=0 is exact.
      95             :  *
      96             :  * Accuracy:
      97             :  *      according to an error analysis, the error is always less than
      98             :  *      1 ulp (unit in the last place).
      99             :  *
     100             :  * Misc. info.
     101             :  *      For IEEE double
     102             :  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
     103             :  *
     104             :  * Constants:
     105             :  * The hexadecimal values are the intended ones for the following
     106             :  * constants. The decimal values may be used, provided that the
     107             :  * compiler will convert from decimal to binary accurately enough
     108             :  * to produce the hexadecimal values shown.
     109             :  */
     110             : 
     111             : #include <float.h>
     112             : 
     113             : #include "math_private.h"
     114             : 
     115             : static const double
     116             : one             = 1.0,
     117             : tiny            = 1.0e-300,
     118             : o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
     119             : ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
     120             : ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
     121             : invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
     122             : /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
     123             : Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
     124             : Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
     125             : Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
     126             : Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
     127             : Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
     128             : 
     129             : static volatile double huge = 1.0e+300;
     130             : 
     131             : double
     132           0 : expm1(double x)
     133             : {
     134             :         double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
     135             :         int32_t k,xsb;
     136             :         u_int32_t hx;
     137             : 
     138           0 :         GET_HIGH_WORD(hx,x);
     139           0 :         xsb = hx&0x80000000;                /* sign bit of x */
     140           0 :         hx &= 0x7fffffff;           /* high word of |x| */
     141             : 
     142             :     /* filter out huge and non-finite argument */
     143           0 :         if(hx >= 0x4043687A) {                       /* if |x|>=56*ln2 */
     144           0 :             if(hx >= 0x40862E42) {           /* if |x|>=709.78... */
     145           0 :                 if(hx>=0x7ff00000) {
     146             :                     u_int32_t low;
     147           0 :                     GET_LOW_WORD(low,x);
     148           0 :                     if(((hx&0xfffff)|low)!=0)
     149           0 :                          return x+x;     /* NaN */
     150           0 :                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
     151             :                 }
     152           0 :                 if(x > o_threshold) return huge*huge; /* overflow */
     153             :             }
     154           0 :             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
     155           0 :                 if(x+tiny<0.0)               /* raise inexact */
     156           0 :                 return tiny-one;        /* return -1 */
     157             :             }
     158             :         }
     159             : 
     160             :     /* argument reduction */
     161           0 :         if(hx > 0x3fd62e42) {                /* if  |x| > 0.5 ln2 */
     162           0 :             if(hx < 0x3FF0A2B2) {    /* and |x| < 1.5 ln2 */
     163           0 :                 if(xsb==0)
     164           0 :                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
     165             :                 else
     166           0 :                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
     167             :             } else {
     168           0 :                 k  = invln2*x+((xsb==0)?0.5:-0.5);
     169           0 :                 t  = k;
     170           0 :                 hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
     171           0 :                 lo = t*ln2_lo;
     172             :             }
     173           0 :             STRICT_ASSIGN(double, x, hi - lo);
     174           0 :             c  = (hi-x)-lo;
     175             :         }
     176           0 :         else if(hx < 0x3c900000) {   /* when |x|<2**-54, return x */
     177           0 :             t = huge+x; /* return x with inexact flags when x!=0 */
     178           0 :             return x - (t-(huge+x));
     179             :         }
     180           0 :         else k = 0;
     181             : 
     182             :     /* x is now in primary range */
     183           0 :         hfx = 0.5*x;
     184           0 :         hxs = x*hfx;
     185           0 :         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
     186           0 :         t  = 3.0-r1*hfx;
     187           0 :         e  = hxs*((r1-t)/(6.0 - x*t));
     188           0 :         if(k==0) return x - (x*e-hxs);          /* c is 0 */
     189             :         else {
     190           0 :             INSERT_WORDS(twopk,0x3ff00000+(k<<20),0);     /* 2^k */
     191           0 :             e  = (x*(e-c)-c);
     192           0 :             e -= hxs;
     193           0 :             if(k== -1) return 0.5*(x-e)-0.5;
     194           0 :             if(k==1) {
     195           0 :                 if(x < -0.25) return -2.0*(e-(x+0.5));
     196           0 :                 else          return  one+2.0*(x-e);
     197             :             }
     198           0 :             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
     199           0 :                 y = one-(e-x);
     200           0 :                 if (k == 1024) {
     201           0 :                     double const_0x1p1023 = pow(2, 1023);
     202           0 :                     y = y*2.0*const_0x1p1023;
     203             :                 }
     204           0 :                 else y = y*twopk;
     205           0 :                 return y-one;
     206             :             }
     207           0 :             t = one;
     208           0 :             if(k<20) {
     209           0 :                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
     210           0 :                 y = t-(e-x);
     211           0 :                 y = y*twopk;
     212             :            } else {
     213           0 :                 SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
     214           0 :                 y = x-(e+t);
     215           0 :                 y += one;
     216           0 :                 y = y*twopk;
     217             :             }
     218             :         }
     219           0 :         return y;
     220             : }

Generated by: LCOV version 1.13