LCOV - code coverage report
Current view: top level - modules/zlib/src - trees.c (source / functions) Hit Total Coverage
Test: output.info Lines: 182 298 61.1 %
Date: 2017-07-14 16:53:18 Functions: 16 21 76.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* trees.c -- output deflated data using Huffman coding
       2             :  * Copyright (C) 1995-2017 Jean-loup Gailly
       3             :  * detect_data_type() function provided freely by Cosmin Truta, 2006
       4             :  * For conditions of distribution and use, see copyright notice in zlib.h
       5             :  */
       6             : 
       7             : /*
       8             :  *  ALGORITHM
       9             :  *
      10             :  *      The "deflation" process uses several Huffman trees. The more
      11             :  *      common source values are represented by shorter bit sequences.
      12             :  *
      13             :  *      Each code tree is stored in a compressed form which is itself
      14             :  * a Huffman encoding of the lengths of all the code strings (in
      15             :  * ascending order by source values).  The actual code strings are
      16             :  * reconstructed from the lengths in the inflate process, as described
      17             :  * in the deflate specification.
      18             :  *
      19             :  *  REFERENCES
      20             :  *
      21             :  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
      22             :  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
      23             :  *
      24             :  *      Storer, James A.
      25             :  *          Data Compression:  Methods and Theory, pp. 49-50.
      26             :  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
      27             :  *
      28             :  *      Sedgewick, R.
      29             :  *          Algorithms, p290.
      30             :  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
      31             :  */
      32             : 
      33             : /* @(#) $Id$ */
      34             : 
      35             : /* #define GEN_TREES_H */
      36             : 
      37             : #include "deflate.h"
      38             : 
      39             : #ifdef ZLIB_DEBUG
      40             : #  include <ctype.h>
      41             : #endif
      42             : 
      43             : /* ===========================================================================
      44             :  * Constants
      45             :  */
      46             : 
      47             : #define MAX_BL_BITS 7
      48             : /* Bit length codes must not exceed MAX_BL_BITS bits */
      49             : 
      50             : #define END_BLOCK 256
      51             : /* end of block literal code */
      52             : 
      53             : #define REP_3_6      16
      54             : /* repeat previous bit length 3-6 times (2 bits of repeat count) */
      55             : 
      56             : #define REPZ_3_10    17
      57             : /* repeat a zero length 3-10 times  (3 bits of repeat count) */
      58             : 
      59             : #define REPZ_11_138  18
      60             : /* repeat a zero length 11-138 times  (7 bits of repeat count) */
      61             : 
      62             : local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
      63             :    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
      64             : 
      65             : local const int extra_dbits[D_CODES] /* extra bits for each distance code */
      66             :    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
      67             : 
      68             : local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
      69             :    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
      70             : 
      71             : local const uch bl_order[BL_CODES]
      72             :    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
      73             : /* The lengths of the bit length codes are sent in order of decreasing
      74             :  * probability, to avoid transmitting the lengths for unused bit length codes.
      75             :  */
      76             : 
      77             : /* ===========================================================================
      78             :  * Local data. These are initialized only once.
      79             :  */
      80             : 
      81             : #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
      82             : 
      83             : #if defined(GEN_TREES_H) || !defined(STDC)
      84             : /* non ANSI compilers may not accept trees.h */
      85             : 
      86             : local ct_data static_ltree[L_CODES+2];
      87             : /* The static literal tree. Since the bit lengths are imposed, there is no
      88             :  * need for the L_CODES extra codes used during heap construction. However
      89             :  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
      90             :  * below).
      91             :  */
      92             : 
      93             : local ct_data static_dtree[D_CODES];
      94             : /* The static distance tree. (Actually a trivial tree since all codes use
      95             :  * 5 bits.)
      96             :  */
      97             : 
      98             : uch _dist_code[DIST_CODE_LEN];
      99             : /* Distance codes. The first 256 values correspond to the distances
     100             :  * 3 .. 258, the last 256 values correspond to the top 8 bits of
     101             :  * the 15 bit distances.
     102             :  */
     103             : 
     104             : uch _length_code[MAX_MATCH-MIN_MATCH+1];
     105             : /* length code for each normalized match length (0 == MIN_MATCH) */
     106             : 
     107             : local int base_length[LENGTH_CODES];
     108             : /* First normalized length for each code (0 = MIN_MATCH) */
     109             : 
     110             : local int base_dist[D_CODES];
     111             : /* First normalized distance for each code (0 = distance of 1) */
     112             : 
     113             : #else
     114             : #  include "trees.h"
     115             : #endif /* GEN_TREES_H */
     116             : 
     117             : struct static_tree_desc_s {
     118             :     const ct_data *static_tree;  /* static tree or NULL */
     119             :     const intf *extra_bits;      /* extra bits for each code or NULL */
     120             :     int     extra_base;          /* base index for extra_bits */
     121             :     int     elems;               /* max number of elements in the tree */
     122             :     int     max_length;          /* max bit length for the codes */
     123             : };
     124             : 
     125             : local const static_tree_desc  static_l_desc =
     126             : {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
     127             : 
     128             : local const static_tree_desc  static_d_desc =
     129             : {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
     130             : 
     131             : local const static_tree_desc  static_bl_desc =
     132             : {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
     133             : 
     134             : /* ===========================================================================
     135             :  * Local (static) routines in this file.
     136             :  */
     137             : 
     138             : local void tr_static_init OF((void));
     139             : local void init_block     OF((deflate_state *s));
     140             : local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
     141             : local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
     142             : local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
     143             : local void build_tree     OF((deflate_state *s, tree_desc *desc));
     144             : local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     145             : local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
     146             : local int  build_bl_tree  OF((deflate_state *s));
     147             : local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
     148             :                               int blcodes));
     149             : local void compress_block OF((deflate_state *s, const ct_data *ltree,
     150             :                               const ct_data *dtree));
     151             : local int  detect_data_type OF((deflate_state *s));
     152             : local unsigned bi_reverse OF((unsigned value, int length));
     153             : local void bi_windup      OF((deflate_state *s));
     154             : local void bi_flush       OF((deflate_state *s));
     155             : 
     156             : #ifdef GEN_TREES_H
     157             : local void gen_trees_header OF((void));
     158             : #endif
     159             : 
     160             : #ifndef ZLIB_DEBUG
     161             : #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
     162             :    /* Send a code of the given tree. c and tree must not have side effects */
     163             : 
     164             : #else /* !ZLIB_DEBUG */
     165             : #  define send_code(s, c, tree) \
     166             :      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
     167             :        send_bits(s, tree[c].Code, tree[c].Len); }
     168             : #endif
     169             : 
     170             : /* ===========================================================================
     171             :  * Output a short LSB first on the stream.
     172             :  * IN assertion: there is enough room in pendingBuf.
     173             :  */
     174             : #define put_short(s, w) { \
     175             :     put_byte(s, (uch)((w) & 0xff)); \
     176             :     put_byte(s, (uch)((ush)(w) >> 8)); \
     177             : }
     178             : 
     179             : /* ===========================================================================
     180             :  * Send a value on a given number of bits.
     181             :  * IN assertion: length <= 16 and value fits in length bits.
     182             :  */
     183             : #ifdef ZLIB_DEBUG
     184             : local void send_bits      OF((deflate_state *s, int value, int length));
     185             : 
     186             : local void send_bits(s, value, length)
     187             :     deflate_state *s;
     188             :     int value;  /* value to send */
     189             :     int length; /* number of bits */
     190             : {
     191             :     Tracevv((stderr," l %2d v %4x ", length, value));
     192             :     Assert(length > 0 && length <= 15, "invalid length");
     193             :     s->bits_sent += (ulg)length;
     194             : 
     195             :     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
     196             :      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
     197             :      * unused bits in value.
     198             :      */
     199             :     if (s->bi_valid > (int)Buf_size - length) {
     200             :         s->bi_buf |= (ush)value << s->bi_valid;
     201             :         put_short(s, s->bi_buf);
     202             :         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
     203             :         s->bi_valid += length - Buf_size;
     204             :     } else {
     205             :         s->bi_buf |= (ush)value << s->bi_valid;
     206             :         s->bi_valid += length;
     207             :     }
     208             : }
     209             : #else /* !ZLIB_DEBUG */
     210             : 
     211             : #define send_bits(s, value, length) \
     212             : { int len = length;\
     213             :   if (s->bi_valid > (int)Buf_size - len) {\
     214             :     int val = (int)value;\
     215             :     s->bi_buf |= (ush)val << s->bi_valid;\
     216             :     put_short(s, s->bi_buf);\
     217             :     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
     218             :     s->bi_valid += len - Buf_size;\
     219             :   } else {\
     220             :     s->bi_buf |= (ush)(value) << s->bi_valid;\
     221             :     s->bi_valid += len;\
     222             :   }\
     223             : }
     224             : #endif /* ZLIB_DEBUG */
     225             : 
     226             : 
     227             : /* the arguments must not have side effects */
     228             : 
     229             : /* ===========================================================================
     230             :  * Initialize the various 'constant' tables.
     231             :  */
     232          72 : local void tr_static_init()
     233             : {
     234             : #if defined(GEN_TREES_H) || !defined(STDC)
     235             :     static int static_init_done = 0;
     236             :     int n;        /* iterates over tree elements */
     237             :     int bits;     /* bit counter */
     238             :     int length;   /* length value */
     239             :     int code;     /* code value */
     240             :     int dist;     /* distance index */
     241             :     ush bl_count[MAX_BITS+1];
     242             :     /* number of codes at each bit length for an optimal tree */
     243             : 
     244             :     if (static_init_done) return;
     245             : 
     246             :     /* For some embedded targets, global variables are not initialized: */
     247             : #ifdef NO_INIT_GLOBAL_POINTERS
     248             :     static_l_desc.static_tree = static_ltree;
     249             :     static_l_desc.extra_bits = extra_lbits;
     250             :     static_d_desc.static_tree = static_dtree;
     251             :     static_d_desc.extra_bits = extra_dbits;
     252             :     static_bl_desc.extra_bits = extra_blbits;
     253             : #endif
     254             : 
     255             :     /* Initialize the mapping length (0..255) -> length code (0..28) */
     256             :     length = 0;
     257             :     for (code = 0; code < LENGTH_CODES-1; code++) {
     258             :         base_length[code] = length;
     259             :         for (n = 0; n < (1<<extra_lbits[code]); n++) {
     260             :             _length_code[length++] = (uch)code;
     261             :         }
     262             :     }
     263             :     Assert (length == 256, "tr_static_init: length != 256");
     264             :     /* Note that the length 255 (match length 258) can be represented
     265             :      * in two different ways: code 284 + 5 bits or code 285, so we
     266             :      * overwrite length_code[255] to use the best encoding:
     267             :      */
     268             :     _length_code[length-1] = (uch)code;
     269             : 
     270             :     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
     271             :     dist = 0;
     272             :     for (code = 0 ; code < 16; code++) {
     273             :         base_dist[code] = dist;
     274             :         for (n = 0; n < (1<<extra_dbits[code]); n++) {
     275             :             _dist_code[dist++] = (uch)code;
     276             :         }
     277             :     }
     278             :     Assert (dist == 256, "tr_static_init: dist != 256");
     279             :     dist >>= 7; /* from now on, all distances are divided by 128 */
     280             :     for ( ; code < D_CODES; code++) {
     281             :         base_dist[code] = dist << 7;
     282             :         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
     283             :             _dist_code[256 + dist++] = (uch)code;
     284             :         }
     285             :     }
     286             :     Assert (dist == 256, "tr_static_init: 256+dist != 512");
     287             : 
     288             :     /* Construct the codes of the static literal tree */
     289             :     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
     290             :     n = 0;
     291             :     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
     292             :     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
     293             :     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
     294             :     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
     295             :     /* Codes 286 and 287 do not exist, but we must include them in the
     296             :      * tree construction to get a canonical Huffman tree (longest code
     297             :      * all ones)
     298             :      */
     299             :     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
     300             : 
     301             :     /* The static distance tree is trivial: */
     302             :     for (n = 0; n < D_CODES; n++) {
     303             :         static_dtree[n].Len = 5;
     304             :         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
     305             :     }
     306             :     static_init_done = 1;
     307             : 
     308             : #  ifdef GEN_TREES_H
     309             :     gen_trees_header();
     310             : #  endif
     311             : #endif /* defined(GEN_TREES_H) || !defined(STDC) */
     312          72 : }
     313             : 
     314             : /* ===========================================================================
     315             :  * Genererate the file trees.h describing the static trees.
     316             :  */
     317             : #ifdef GEN_TREES_H
     318             : #  ifndef ZLIB_DEBUG
     319             : #    include <stdio.h>
     320             : #  endif
     321             : 
     322             : #  define SEPARATOR(i, last, width) \
     323             :       ((i) == (last)? "\n};\n\n" :    \
     324             :        ((i) % (width) == (width)-1 ? ",\n" : ", "))
     325             : 
     326             : void gen_trees_header()
     327             : {
     328             :     FILE *header = fopen("trees.h", "w");
     329             :     int i;
     330             : 
     331             :     Assert (header != NULL, "Can't open trees.h");
     332             :     fprintf(header,
     333             :             "/* header created automatically with -DGEN_TREES_H */\n\n");
     334             : 
     335             :     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
     336             :     for (i = 0; i < L_CODES+2; i++) {
     337             :         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
     338             :                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
     339             :     }
     340             : 
     341             :     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
     342             :     for (i = 0; i < D_CODES; i++) {
     343             :         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
     344             :                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
     345             :     }
     346             : 
     347             :     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
     348             :     for (i = 0; i < DIST_CODE_LEN; i++) {
     349             :         fprintf(header, "%2u%s", _dist_code[i],
     350             :                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
     351             :     }
     352             : 
     353             :     fprintf(header,
     354             :         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
     355             :     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
     356             :         fprintf(header, "%2u%s", _length_code[i],
     357             :                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
     358             :     }
     359             : 
     360             :     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
     361             :     for (i = 0; i < LENGTH_CODES; i++) {
     362             :         fprintf(header, "%1u%s", base_length[i],
     363             :                 SEPARATOR(i, LENGTH_CODES-1, 20));
     364             :     }
     365             : 
     366             :     fprintf(header, "local const int base_dist[D_CODES] = {\n");
     367             :     for (i = 0; i < D_CODES; i++) {
     368             :         fprintf(header, "%5u%s", base_dist[i],
     369             :                 SEPARATOR(i, D_CODES-1, 10));
     370             :     }
     371             : 
     372             :     fclose(header);
     373             : }
     374             : #endif /* GEN_TREES_H */
     375             : 
     376             : /* ===========================================================================
     377             :  * Initialize the tree data structures for a new zlib stream.
     378             :  */
     379          72 : void ZLIB_INTERNAL _tr_init(s)
     380             :     deflate_state *s;
     381             : {
     382          72 :     tr_static_init();
     383             : 
     384          72 :     s->l_desc.dyn_tree = s->dyn_ltree;
     385          72 :     s->l_desc.stat_desc = &static_l_desc;
     386             : 
     387          72 :     s->d_desc.dyn_tree = s->dyn_dtree;
     388          72 :     s->d_desc.stat_desc = &static_d_desc;
     389             : 
     390          72 :     s->bl_desc.dyn_tree = s->bl_tree;
     391          72 :     s->bl_desc.stat_desc = &static_bl_desc;
     392             : 
     393          72 :     s->bi_buf = 0;
     394          72 :     s->bi_valid = 0;
     395             : #ifdef ZLIB_DEBUG
     396             :     s->compressed_len = 0L;
     397             :     s->bits_sent = 0L;
     398             : #endif
     399             : 
     400             :     /* Initialize the first block of the first file: */
     401          72 :     init_block(s);
     402          72 : }
     403             : 
     404             : /* ===========================================================================
     405             :  * Initialize a new block.
     406             :  */
     407         144 : local void init_block(s)
     408             :     deflate_state *s;
     409             : {
     410             :     int n; /* iterates over tree elements */
     411             : 
     412             :     /* Initialize the trees. */
     413         144 :     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
     414         144 :     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
     415         144 :     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
     416             : 
     417         144 :     s->dyn_ltree[END_BLOCK].Freq = 1;
     418         144 :     s->opt_len = s->static_len = 0L;
     419         144 :     s->last_lit = s->matches = 0;
     420         144 : }
     421             : 
     422             : #define SMALLEST 1
     423             : /* Index within the heap array of least frequent node in the Huffman tree */
     424             : 
     425             : 
     426             : /* ===========================================================================
     427             :  * Remove the smallest element from the heap and recreate the heap with
     428             :  * one less element. Updates heap and heap_len.
     429             :  */
     430             : #define pqremove(s, tree, top) \
     431             : {\
     432             :     top = s->heap[SMALLEST]; \
     433             :     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
     434             :     pqdownheap(s, tree, SMALLEST); \
     435             : }
     436             : 
     437             : /* ===========================================================================
     438             :  * Compares to subtrees, using the tree depth as tie breaker when
     439             :  * the subtrees have equal frequency. This minimizes the worst case length.
     440             :  */
     441             : #define smaller(tree, n, m, depth) \
     442             :    (tree[n].Freq < tree[m].Freq || \
     443             :    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
     444             : 
     445             : /* ===========================================================================
     446             :  * Restore the heap property by moving down the tree starting at node k,
     447             :  * exchanging a node with the smallest of its two sons if necessary, stopping
     448             :  * when the heap property is re-established (each father smaller than its
     449             :  * two sons).
     450             :  */
     451         648 : local void pqdownheap(s, tree, k)
     452             :     deflate_state *s;
     453             :     ct_data *tree;  /* the tree to restore */
     454             :     int k;               /* node to move down */
     455             : {
     456         648 :     int v = s->heap[k];
     457         648 :     int j = k << 1;  /* left son of k */
     458        1368 :     while (j <= s->heap_len) {
     459             :         /* Set j to the smallest of the two sons: */
     460         216 :         if (j < s->heap_len &&
     461           0 :             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
     462           0 :             j++;
     463             :         }
     464             :         /* Exit if v is smaller than both sons */
     465         216 :         if (smaller(tree, v, s->heap[j], s->depth)) break;
     466             : 
     467             :         /* Exchange v with the smallest son */
     468          72 :         s->heap[k] = s->heap[j];  k = j;
     469             : 
     470             :         /* And continue down the tree, setting j to the left son of k */
     471          72 :         j <<= 1;
     472             :     }
     473         648 :     s->heap[k] = v;
     474         648 : }
     475             : 
     476             : /* ===========================================================================
     477             :  * Compute the optimal bit lengths for a tree and update the total bit length
     478             :  * for the current block.
     479             :  * IN assertion: the fields freq and dad are set, heap[heap_max] and
     480             :  *    above are the tree nodes sorted by increasing frequency.
     481             :  * OUT assertions: the field len is set to the optimal bit length, the
     482             :  *     array bl_count contains the frequencies for each bit length.
     483             :  *     The length opt_len is updated; static_len is also updated if stree is
     484             :  *     not null.
     485             :  */
     486         216 : local void gen_bitlen(s, desc)
     487             :     deflate_state *s;
     488             :     tree_desc *desc;    /* the tree descriptor */
     489             : {
     490         216 :     ct_data *tree        = desc->dyn_tree;
     491         216 :     int max_code         = desc->max_code;
     492         216 :     const ct_data *stree = desc->stat_desc->static_tree;
     493         216 :     const intf *extra    = desc->stat_desc->extra_bits;
     494         216 :     int base             = desc->stat_desc->extra_base;
     495         216 :     int max_length       = desc->stat_desc->max_length;
     496             :     int h;              /* heap index */
     497             :     int n, m;           /* iterate over the tree elements */
     498             :     int bits;           /* bit length */
     499             :     int xbits;          /* extra bits */
     500             :     ush f;              /* frequency */
     501         216 :     int overflow = 0;   /* number of elements with bit length too large */
     502             : 
     503         216 :     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
     504             : 
     505             :     /* In a first pass, compute the optimal bit lengths (which may
     506             :      * overflow in the case of the bit length tree).
     507             :      */
     508         216 :     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
     509             : 
     510         648 :     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
     511         432 :         n = s->heap[h];
     512         432 :         bits = tree[tree[n].Dad].Len + 1;
     513         432 :         if (bits > max_length) bits = max_length, overflow++;
     514         432 :         tree[n].Len = (ush)bits;
     515             :         /* We overwrite tree[n].Dad which is no longer needed */
     516             : 
     517         432 :         if (n > max_code) continue; /* not a leaf node */
     518             : 
     519         432 :         s->bl_count[bits]++;
     520         432 :         xbits = 0;
     521         432 :         if (n >= base) xbits = extra[n-base];
     522         432 :         f = tree[n].Freq;
     523         432 :         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
     524         432 :         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
     525             :     }
     526         216 :     if (overflow == 0) return;
     527             : 
     528             :     Tracev((stderr,"\nbit length overflow\n"));
     529             :     /* This happens for example on obj2 and pic of the Calgary corpus */
     530             : 
     531             :     /* Find the first bit length which could increase: */
     532             :     do {
     533           0 :         bits = max_length-1;
     534           0 :         while (s->bl_count[bits] == 0) bits--;
     535           0 :         s->bl_count[bits]--;      /* move one leaf down the tree */
     536           0 :         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
     537           0 :         s->bl_count[max_length]--;
     538             :         /* The brother of the overflow item also moves one step up,
     539             :          * but this does not affect bl_count[max_length]
     540             :          */
     541           0 :         overflow -= 2;
     542           0 :     } while (overflow > 0);
     543             : 
     544             :     /* Now recompute all bit lengths, scanning in increasing frequency.
     545             :      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     546             :      * lengths instead of fixing only the wrong ones. This idea is taken
     547             :      * from 'ar' written by Haruhiko Okumura.)
     548             :      */
     549           0 :     for (bits = max_length; bits != 0; bits--) {
     550           0 :         n = s->bl_count[bits];
     551           0 :         while (n != 0) {
     552           0 :             m = s->heap[--h];
     553           0 :             if (m > max_code) continue;
     554           0 :             if ((unsigned) tree[m].Len != (unsigned) bits) {
     555             :                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
     556           0 :                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
     557           0 :                 tree[m].Len = (ush)bits;
     558             :             }
     559           0 :             n--;
     560             :         }
     561             :     }
     562             : }
     563             : 
     564             : /* ===========================================================================
     565             :  * Generate the codes for a given tree and bit counts (which need not be
     566             :  * optimal).
     567             :  * IN assertion: the array bl_count contains the bit length statistics for
     568             :  * the given tree and the field len is set for all tree elements.
     569             :  * OUT assertion: the field code is set for all tree elements of non
     570             :  *     zero code length.
     571             :  */
     572         216 : local void gen_codes (tree, max_code, bl_count)
     573             :     ct_data *tree;             /* the tree to decorate */
     574             :     int max_code;              /* largest code with non zero frequency */
     575             :     ushf *bl_count;            /* number of codes at each bit length */
     576             : {
     577             :     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
     578         216 :     unsigned code = 0;         /* running code value */
     579             :     int bits;                  /* bit index */
     580             :     int n;                     /* code index */
     581             : 
     582             :     /* The distribution counts are first used to generate the code values
     583             :      * without bit reversal.
     584             :      */
     585        3456 :     for (bits = 1; bits <= MAX_BITS; bits++) {
     586        3240 :         code = (code + bl_count[bits-1]) << 1;
     587        3240 :         next_code[bits] = (ush)code;
     588             :     }
     589             :     /* Check that the bit counts in bl_count are consistent. The last code
     590             :      * must be all ones.
     591             :      */
     592             :     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
     593             :             "inconsistent bit counts");
     594             :     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
     595             : 
     596       20232 :     for (n = 0;  n <= max_code; n++) {
     597       20016 :         int len = tree[n].Len;
     598       20016 :         if (len == 0) continue;
     599             :         /* Now reverse the bits */
     600         432 :         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
     601             : 
     602             :         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
     603             :              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
     604             :     }
     605         216 : }
     606             : 
     607             : /* ===========================================================================
     608             :  * Construct one Huffman tree and assigns the code bit strings and lengths.
     609             :  * Update the total bit length for the current block.
     610             :  * IN assertion: the field freq is set for all tree elements.
     611             :  * OUT assertions: the fields len and code are set to the optimal bit length
     612             :  *     and corresponding code. The length opt_len is updated; static_len is
     613             :  *     also updated if stree is not null. The field max_code is set.
     614             :  */
     615         216 : local void build_tree(s, desc)
     616             :     deflate_state *s;
     617             :     tree_desc *desc; /* the tree descriptor */
     618             : {
     619         216 :     ct_data *tree         = desc->dyn_tree;
     620         216 :     const ct_data *stree  = desc->stat_desc->static_tree;
     621         216 :     int elems             = desc->stat_desc->elems;
     622             :     int n, m;          /* iterate over heap elements */
     623         216 :     int max_code = -1; /* largest code with non zero frequency */
     624             :     int node;          /* new node being created */
     625             : 
     626             :     /* Construct the initial heap, with least frequent element in
     627             :      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     628             :      * heap[0] is not used.
     629             :      */
     630         216 :     s->heap_len = 0, s->heap_max = HEAP_SIZE;
     631             : 
     632       24336 :     for (n = 0; n < elems; n++) {
     633       24120 :         if (tree[n].Freq != 0) {
     634         216 :             s->heap[++(s->heap_len)] = max_code = n;
     635         216 :             s->depth[n] = 0;
     636             :         } else {
     637       23904 :             tree[n].Len = 0;
     638             :         }
     639             :     }
     640             : 
     641             :     /* The pkzip format requires that at least one distance code exists,
     642             :      * and that at least one bit should be sent even if there is only one
     643             :      * possible code. So to avoid special checks later on we force at least
     644             :      * two codes of non zero frequency.
     645             :      */
     646         648 :     while (s->heap_len < 2) {
     647         216 :         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
     648         216 :         tree[node].Freq = 1;
     649         216 :         s->depth[node] = 0;
     650         216 :         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
     651             :         /* node is 0 or 1 so it does not have extra bits */
     652             :     }
     653         216 :     desc->max_code = max_code;
     654             : 
     655             :     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     656             :      * establish sub-heaps of increasing lengths:
     657             :      */
     658         216 :     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
     659             : 
     660             :     /* Construct the Huffman tree by repeatedly combining the least two
     661             :      * frequent nodes.
     662             :      */
     663         216 :     node = elems;              /* next internal node of the tree */
     664             :     do {
     665         216 :         pqremove(s, tree, n);  /* n = node of least frequency */
     666         216 :         m = s->heap[SMALLEST]; /* m = node of next least frequency */
     667             : 
     668         216 :         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
     669         216 :         s->heap[--(s->heap_max)] = m;
     670             : 
     671             :         /* Create a new node father of n and m */
     672         216 :         tree[node].Freq = tree[n].Freq + tree[m].Freq;
     673         432 :         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
     674         216 :                                 s->depth[n] : s->depth[m]) + 1);
     675         216 :         tree[n].Dad = tree[m].Dad = (ush)node;
     676             : #ifdef DUMP_BL_TREE
     677             :         if (tree == s->bl_tree) {
     678             :             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
     679             :                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
     680             :         }
     681             : #endif
     682             :         /* and insert the new node in the heap */
     683         216 :         s->heap[SMALLEST] = node++;
     684         216 :         pqdownheap(s, tree, SMALLEST);
     685             : 
     686         216 :     } while (s->heap_len >= 2);
     687             : 
     688         216 :     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
     689             : 
     690             :     /* At this point, the fields freq and dad are set. We can now
     691             :      * generate the bit lengths.
     692             :      */
     693         216 :     gen_bitlen(s, (tree_desc *)desc);
     694             : 
     695             :     /* The field len is now set, we can generate the bit codes */
     696         216 :     gen_codes ((ct_data *)tree, max_code, s->bl_count);
     697         216 : }
     698             : 
     699             : /* ===========================================================================
     700             :  * Scan a literal or distance tree to determine the frequencies of the codes
     701             :  * in the bit length tree.
     702             :  */
     703         144 : local void scan_tree (s, tree, max_code)
     704             :     deflate_state *s;
     705             :     ct_data *tree;   /* the tree to be scanned */
     706             :     int max_code;    /* and its largest code of non zero frequency */
     707             : {
     708             :     int n;                     /* iterates over all tree elements */
     709         144 :     int prevlen = -1;          /* last emitted length */
     710             :     int curlen;                /* length of current code */
     711         144 :     int nextlen = tree[0].Len; /* length of next code */
     712         144 :     int count = 0;             /* repeat count of the current code */
     713         144 :     int max_count = 7;         /* max repeat count */
     714         144 :     int min_count = 4;         /* min repeat count */
     715             : 
     716         144 :     if (nextlen == 0) max_count = 138, min_count = 3;
     717         144 :     tree[max_code+1].Len = (ush)0xffff; /* guard */
     718             : 
     719       18792 :     for (n = 0; n <= max_code; n++) {
     720       18648 :         curlen = nextlen; nextlen = tree[n+1].Len;
     721       18648 :         if (++count < max_count && curlen == nextlen) {
     722       18288 :             continue;
     723         360 :         } else if (count < min_count) {
     724         216 :             s->bl_tree[curlen].Freq += count;
     725         144 :         } else if (curlen != 0) {
     726           0 :             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
     727           0 :             s->bl_tree[REP_3_6].Freq++;
     728         144 :         } else if (count <= 10) {
     729           0 :             s->bl_tree[REPZ_3_10].Freq++;
     730             :         } else {
     731         144 :             s->bl_tree[REPZ_11_138].Freq++;
     732             :         }
     733         360 :         count = 0; prevlen = curlen;
     734         360 :         if (nextlen == 0) {
     735         144 :             max_count = 138, min_count = 3;
     736         216 :         } else if (curlen == nextlen) {
     737           0 :             max_count = 6, min_count = 3;
     738             :         } else {
     739         216 :             max_count = 7, min_count = 4;
     740             :         }
     741             :     }
     742         144 : }
     743             : 
     744             : /* ===========================================================================
     745             :  * Send a literal or distance tree in compressed form, using the codes in
     746             :  * bl_tree.
     747             :  */
     748           0 : local void send_tree (s, tree, max_code)
     749             :     deflate_state *s;
     750             :     ct_data *tree; /* the tree to be scanned */
     751             :     int max_code;       /* and its largest code of non zero frequency */
     752             : {
     753             :     int n;                     /* iterates over all tree elements */
     754           0 :     int prevlen = -1;          /* last emitted length */
     755             :     int curlen;                /* length of current code */
     756           0 :     int nextlen = tree[0].Len; /* length of next code */
     757           0 :     int count = 0;             /* repeat count of the current code */
     758           0 :     int max_count = 7;         /* max repeat count */
     759           0 :     int min_count = 4;         /* min repeat count */
     760             : 
     761             :     /* tree[max_code+1].Len = -1; */  /* guard already set */
     762           0 :     if (nextlen == 0) max_count = 138, min_count = 3;
     763             : 
     764           0 :     for (n = 0; n <= max_code; n++) {
     765           0 :         curlen = nextlen; nextlen = tree[n+1].Len;
     766           0 :         if (++count < max_count && curlen == nextlen) {
     767           0 :             continue;
     768           0 :         } else if (count < min_count) {
     769           0 :             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
     770             : 
     771           0 :         } else if (curlen != 0) {
     772           0 :             if (curlen != prevlen) {
     773           0 :                 send_code(s, curlen, s->bl_tree); count--;
     774             :             }
     775             :             Assert(count >= 3 && count <= 6, " 3_6?");
     776           0 :             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
     777             : 
     778           0 :         } else if (count <= 10) {
     779           0 :             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
     780             : 
     781             :         } else {
     782           0 :             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
     783             :         }
     784           0 :         count = 0; prevlen = curlen;
     785           0 :         if (nextlen == 0) {
     786           0 :             max_count = 138, min_count = 3;
     787           0 :         } else if (curlen == nextlen) {
     788           0 :             max_count = 6, min_count = 3;
     789             :         } else {
     790           0 :             max_count = 7, min_count = 4;
     791             :         }
     792             :     }
     793           0 : }
     794             : 
     795             : /* ===========================================================================
     796             :  * Construct the Huffman tree for the bit lengths and return the index in
     797             :  * bl_order of the last bit length code to send.
     798             :  */
     799          72 : local int build_bl_tree(s)
     800             :     deflate_state *s;
     801             : {
     802             :     int max_blindex;  /* index of last bit length code of non zero freq */
     803             : 
     804             :     /* Determine the bit length frequencies for literal and distance trees */
     805          72 :     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
     806          72 :     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
     807             : 
     808             :     /* Build the bit length tree: */
     809          72 :     build_tree(s, (tree_desc *)(&(s->bl_desc)));
     810             :     /* opt_len now includes the length of the tree representations, except
     811             :      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     812             :      */
     813             : 
     814             :     /* Determine the number of bit length codes to send. The pkzip format
     815             :      * requires that at least 4 bit length codes be sent. (appnote.txt says
     816             :      * 3 but the actual value used is 4.)
     817             :      */
     818         144 :     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
     819         144 :         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
     820             :     }
     821             :     /* Update opt_len to include the bit length tree and counts */
     822          72 :     s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
     823             :     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
     824             :             s->opt_len, s->static_len));
     825             : 
     826          72 :     return max_blindex;
     827             : }
     828             : 
     829             : /* ===========================================================================
     830             :  * Send the header for a block using dynamic Huffman trees: the counts, the
     831             :  * lengths of the bit length codes, the literal tree and the distance tree.
     832             :  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
     833             :  */
     834           0 : local void send_all_trees(s, lcodes, dcodes, blcodes)
     835             :     deflate_state *s;
     836             :     int lcodes, dcodes, blcodes; /* number of codes for each tree */
     837             : {
     838             :     int rank;                    /* index in bl_order */
     839             : 
     840             :     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
     841             :     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
     842             :             "too many codes");
     843             :     Tracev((stderr, "\nbl counts: "));
     844           0 :     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
     845           0 :     send_bits(s, dcodes-1,   5);
     846           0 :     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
     847           0 :     for (rank = 0; rank < blcodes; rank++) {
     848             :         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
     849           0 :         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
     850             :     }
     851             :     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
     852             : 
     853           0 :     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
     854             :     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
     855             : 
     856           0 :     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
     857             :     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
     858           0 : }
     859             : 
     860             : /* ===========================================================================
     861             :  * Send a stored block
     862             :  */
     863           0 : void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
     864             :     deflate_state *s;
     865             :     charf *buf;       /* input block */
     866             :     ulg stored_len;   /* length of input block */
     867             :     int last;         /* one if this is the last block for a file */
     868             : {
     869           0 :     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
     870           0 :     bi_windup(s);        /* align on byte boundary */
     871           0 :     put_short(s, (ush)stored_len);
     872           0 :     put_short(s, (ush)~stored_len);
     873           0 :     zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
     874           0 :     s->pending += stored_len;
     875             : #ifdef ZLIB_DEBUG
     876             :     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
     877             :     s->compressed_len += (stored_len + 4) << 3;
     878             :     s->bits_sent += 2*16;
     879             :     s->bits_sent += stored_len<<3;
     880             : #endif
     881           0 : }
     882             : 
     883             : /* ===========================================================================
     884             :  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
     885             :  */
     886         216 : void ZLIB_INTERNAL _tr_flush_bits(s)
     887             :     deflate_state *s;
     888             : {
     889         216 :     bi_flush(s);
     890         216 : }
     891             : 
     892             : /* ===========================================================================
     893             :  * Send one empty static block to give enough lookahead for inflate.
     894             :  * This takes 10 bits, of which 7 may remain in the bit buffer.
     895             :  */
     896           0 : void ZLIB_INTERNAL _tr_align(s)
     897             :     deflate_state *s;
     898             : {
     899           0 :     send_bits(s, STATIC_TREES<<1, 3);
     900           0 :     send_code(s, END_BLOCK, static_ltree);
     901             : #ifdef ZLIB_DEBUG
     902             :     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
     903             : #endif
     904           0 :     bi_flush(s);
     905           0 : }
     906             : 
     907             : /* ===========================================================================
     908             :  * Determine the best encoding for the current block: dynamic trees, static
     909             :  * trees or store, and write out the encoded block.
     910             :  */
     911          72 : void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
     912             :     deflate_state *s;
     913             :     charf *buf;       /* input block, or NULL if too old */
     914             :     ulg stored_len;   /* length of input block */
     915             :     int last;         /* one if this is the last block for a file */
     916             : {
     917             :     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
     918          72 :     int max_blindex = 0;  /* index of last bit length code of non zero freq */
     919             : 
     920             :     /* Build the Huffman trees unless a stored block is forced */
     921          72 :     if (s->level > 0) {
     922             : 
     923             :         /* Check if the file is binary or text */
     924          72 :         if (s->strm->data_type == Z_UNKNOWN)
     925          72 :             s->strm->data_type = detect_data_type(s);
     926             : 
     927             :         /* Construct the literal and distance trees */
     928          72 :         build_tree(s, (tree_desc *)(&(s->l_desc)));
     929             :         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
     930             :                 s->static_len));
     931             : 
     932          72 :         build_tree(s, (tree_desc *)(&(s->d_desc)));
     933             :         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
     934             :                 s->static_len));
     935             :         /* At this point, opt_len and static_len are the total bit lengths of
     936             :          * the compressed block data, excluding the tree representations.
     937             :          */
     938             : 
     939             :         /* Build the bit length tree for the above two trees, and get the index
     940             :          * in bl_order of the last bit length code to send.
     941             :          */
     942          72 :         max_blindex = build_bl_tree(s);
     943             : 
     944             :         /* Determine the best encoding. Compute the block lengths in bytes. */
     945          72 :         opt_lenb = (s->opt_len+3+7)>>3;
     946          72 :         static_lenb = (s->static_len+3+7)>>3;
     947             : 
     948             :         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
     949             :                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
     950             :                 s->last_lit));
     951             : 
     952          72 :         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
     953             : 
     954             :     } else {
     955             :         Assert(buf != (char*)0, "lost buf");
     956           0 :         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
     957             :     }
     958             : 
     959             : #ifdef FORCE_STORED
     960             :     if (buf != (char*)0) { /* force stored block */
     961             : #else
     962          72 :     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
     963             :                        /* 4: two words for the lengths */
     964             : #endif
     965             :         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
     966             :          * Otherwise we can't have processed more than WSIZE input bytes since
     967             :          * the last block flush, because compression would have been
     968             :          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
     969             :          * transform a block into a stored block.
     970             :          */
     971           0 :         _tr_stored_block(s, buf, stored_len, last);
     972             : 
     973             : #ifdef FORCE_STATIC
     974             :     } else if (static_lenb >= 0) { /* force static trees */
     975             : #else
     976          72 :     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
     977             : #endif
     978          72 :         send_bits(s, (STATIC_TREES<<1)+last, 3);
     979          72 :         compress_block(s, (const ct_data *)static_ltree,
     980             :                        (const ct_data *)static_dtree);
     981             : #ifdef ZLIB_DEBUG
     982             :         s->compressed_len += 3 + s->static_len;
     983             : #endif
     984             :     } else {
     985           0 :         send_bits(s, (DYN_TREES<<1)+last, 3);
     986           0 :         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
     987             :                        max_blindex+1);
     988           0 :         compress_block(s, (const ct_data *)s->dyn_ltree,
     989           0 :                        (const ct_data *)s->dyn_dtree);
     990             : #ifdef ZLIB_DEBUG
     991             :         s->compressed_len += 3 + s->opt_len;
     992             : #endif
     993             :     }
     994             :     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
     995             :     /* The above check is made mod 2^32, for files larger than 512 MB
     996             :      * and uLong implemented on 32 bits.
     997             :      */
     998          72 :     init_block(s);
     999             : 
    1000          72 :     if (last) {
    1001          72 :         bi_windup(s);
    1002             : #ifdef ZLIB_DEBUG
    1003             :         s->compressed_len += 7;  /* align on byte boundary */
    1004             : #endif
    1005             :     }
    1006             :     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
    1007             :            s->compressed_len-7*last));
    1008          72 : }
    1009             : 
    1010             : /* ===========================================================================
    1011             :  * Save the match info and tally the frequency counts. Return true if
    1012             :  * the current block must be flushed.
    1013             :  */
    1014           0 : int ZLIB_INTERNAL _tr_tally (s, dist, lc)
    1015             :     deflate_state *s;
    1016             :     unsigned dist;  /* distance of matched string */
    1017             :     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
    1018             : {
    1019           0 :     s->d_buf[s->last_lit] = (ush)dist;
    1020           0 :     s->l_buf[s->last_lit++] = (uch)lc;
    1021           0 :     if (dist == 0) {
    1022             :         /* lc is the unmatched char */
    1023           0 :         s->dyn_ltree[lc].Freq++;
    1024             :     } else {
    1025           0 :         s->matches++;
    1026             :         /* Here, lc is the match length - MIN_MATCH */
    1027           0 :         dist--;             /* dist = match distance - 1 */
    1028             :         Assert((ush)dist < (ush)MAX_DIST(s) &&
    1029             :                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
    1030             :                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
    1031             : 
    1032           0 :         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
    1033           0 :         s->dyn_dtree[d_code(dist)].Freq++;
    1034             :     }
    1035             : 
    1036             : #ifdef TRUNCATE_BLOCK
    1037             :     /* Try to guess if it is profitable to stop the current block here */
    1038             :     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
    1039             :         /* Compute an upper bound for the compressed length */
    1040             :         ulg out_length = (ulg)s->last_lit*8L;
    1041             :         ulg in_length = (ulg)((long)s->strstart - s->block_start);
    1042             :         int dcode;
    1043             :         for (dcode = 0; dcode < D_CODES; dcode++) {
    1044             :             out_length += (ulg)s->dyn_dtree[dcode].Freq *
    1045             :                 (5L+extra_dbits[dcode]);
    1046             :         }
    1047             :         out_length >>= 3;
    1048             :         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
    1049             :                s->last_lit, in_length, out_length,
    1050             :                100L - out_length*100L/in_length));
    1051             :         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
    1052             :     }
    1053             : #endif
    1054           0 :     return (s->last_lit == s->lit_bufsize-1);
    1055             :     /* We avoid equality with lit_bufsize because of wraparound at 64K
    1056             :      * on 16 bit machines and because stored blocks are restricted to
    1057             :      * 64K-1 bytes.
    1058             :      */
    1059             : }
    1060             : 
    1061             : /* ===========================================================================
    1062             :  * Send the block data compressed using the given Huffman trees
    1063             :  */
    1064          72 : local void compress_block(s, ltree, dtree)
    1065             :     deflate_state *s;
    1066             :     const ct_data *ltree; /* literal tree */
    1067             :     const ct_data *dtree; /* distance tree */
    1068             : {
    1069             :     unsigned dist;      /* distance of matched string */
    1070             :     int lc;             /* match length or unmatched char (if dist == 0) */
    1071          72 :     unsigned lx = 0;    /* running index in l_buf */
    1072             :     unsigned code;      /* the code to send */
    1073             :     int extra;          /* number of extra bits to send */
    1074             : 
    1075          72 :     if (s->last_lit != 0) do {
    1076           0 :         dist = s->d_buf[lx];
    1077           0 :         lc = s->l_buf[lx++];
    1078           0 :         if (dist == 0) {
    1079           0 :             send_code(s, lc, ltree); /* send a literal byte */
    1080             :             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
    1081             :         } else {
    1082             :             /* Here, lc is the match length - MIN_MATCH */
    1083           0 :             code = _length_code[lc];
    1084           0 :             send_code(s, code+LITERALS+1, ltree); /* send the length code */
    1085           0 :             extra = extra_lbits[code];
    1086           0 :             if (extra != 0) {
    1087           0 :                 lc -= base_length[code];
    1088           0 :                 send_bits(s, lc, extra);       /* send the extra length bits */
    1089             :             }
    1090           0 :             dist--; /* dist is now the match distance - 1 */
    1091           0 :             code = d_code(dist);
    1092             :             Assert (code < D_CODES, "bad d_code");
    1093             : 
    1094           0 :             send_code(s, code, dtree);       /* send the distance code */
    1095           0 :             extra = extra_dbits[code];
    1096           0 :             if (extra != 0) {
    1097           0 :                 dist -= (unsigned)base_dist[code];
    1098           0 :                 send_bits(s, dist, extra);   /* send the extra distance bits */
    1099             :             }
    1100             :         } /* literal or match pair ? */
    1101             : 
    1102             :         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
    1103             :         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
    1104             :                "pendingBuf overflow");
    1105             : 
    1106           0 :     } while (lx < s->last_lit);
    1107             : 
    1108          72 :     send_code(s, END_BLOCK, ltree);
    1109          72 : }
    1110             : 
    1111             : /* ===========================================================================
    1112             :  * Check if the data type is TEXT or BINARY, using the following algorithm:
    1113             :  * - TEXT if the two conditions below are satisfied:
    1114             :  *    a) There are no non-portable control characters belonging to the
    1115             :  *       "black list" (0..6, 14..25, 28..31).
    1116             :  *    b) There is at least one printable character belonging to the
    1117             :  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
    1118             :  * - BINARY otherwise.
    1119             :  * - The following partially-portable control characters form a
    1120             :  *   "gray list" that is ignored in this detection algorithm:
    1121             :  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
    1122             :  * IN assertion: the fields Freq of dyn_ltree are set.
    1123             :  */
    1124          72 : local int detect_data_type(s)
    1125             :     deflate_state *s;
    1126             : {
    1127             :     /* black_mask is the bit mask of black-listed bytes
    1128             :      * set bits 0..6, 14..25, and 28..31
    1129             :      * 0xf3ffc07f = binary 11110011111111111100000001111111
    1130             :      */
    1131          72 :     unsigned long black_mask = 0xf3ffc07fUL;
    1132             :     int n;
    1133             : 
    1134             :     /* Check for non-textual ("black-listed") bytes. */
    1135        2376 :     for (n = 0; n <= 31; n++, black_mask >>= 1)
    1136        2304 :         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
    1137           0 :             return Z_BINARY;
    1138             : 
    1139             :     /* Check for textual ("white-listed") bytes. */
    1140          72 :     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
    1141          72 :             || s->dyn_ltree[13].Freq != 0)
    1142           0 :         return Z_TEXT;
    1143       16200 :     for (n = 32; n < LITERALS; n++)
    1144       16128 :         if (s->dyn_ltree[n].Freq != 0)
    1145           0 :             return Z_TEXT;
    1146             : 
    1147             :     /* There are no "black-listed" or "white-listed" bytes:
    1148             :      * this stream either is empty or has tolerated ("gray-listed") bytes only.
    1149             :      */
    1150          72 :     return Z_BINARY;
    1151             : }
    1152             : 
    1153             : /* ===========================================================================
    1154             :  * Reverse the first len bits of a code, using straightforward code (a faster
    1155             :  * method would use a table)
    1156             :  * IN assertion: 1 <= len <= 15
    1157             :  */
    1158         432 : local unsigned bi_reverse(code, len)
    1159             :     unsigned code; /* the value to invert */
    1160             :     int len;       /* its bit length */
    1161             : {
    1162         432 :     register unsigned res = 0;
    1163             :     do {
    1164         432 :         res |= code & 1;
    1165         432 :         code >>= 1, res <<= 1;
    1166         432 :     } while (--len > 0);
    1167         432 :     return res >> 1;
    1168             : }
    1169             : 
    1170             : /* ===========================================================================
    1171             :  * Flush the bit buffer, keeping at most 7 bits in it.
    1172             :  */
    1173         216 : local void bi_flush(s)
    1174             :     deflate_state *s;
    1175             : {
    1176         216 :     if (s->bi_valid == 16) {
    1177           0 :         put_short(s, s->bi_buf);
    1178           0 :         s->bi_buf = 0;
    1179           0 :         s->bi_valid = 0;
    1180         216 :     } else if (s->bi_valid >= 8) {
    1181           0 :         put_byte(s, (Byte)s->bi_buf);
    1182           0 :         s->bi_buf >>= 8;
    1183           0 :         s->bi_valid -= 8;
    1184             :     }
    1185         216 : }
    1186             : 
    1187             : /* ===========================================================================
    1188             :  * Flush the bit buffer and align the output on a byte boundary
    1189             :  */
    1190          72 : local void bi_windup(s)
    1191             :     deflate_state *s;
    1192             : {
    1193          72 :     if (s->bi_valid > 8) {
    1194          72 :         put_short(s, s->bi_buf);
    1195           0 :     } else if (s->bi_valid > 0) {
    1196           0 :         put_byte(s, (Byte)s->bi_buf);
    1197             :     }
    1198          72 :     s->bi_buf = 0;
    1199          72 :     s->bi_valid = 0;
    1200             : #ifdef ZLIB_DEBUG
    1201             :     s->bits_sent = (s->bits_sent+7) & ~7;
    1202             : #endif
    1203          72 : }

Generated by: LCOV version 1.13