Line data Source code
1 : /*
2 : * cipher.c
3 : *
4 : * cipher meta-functions
5 : *
6 : * David A. McGrew
7 : * Cisco Systems, Inc.
8 : *
9 : */
10 :
11 : /*
12 : *
13 : * Copyright (c) 2001-2006, Cisco Systems, Inc.
14 : * All rights reserved.
15 : *
16 : * Redistribution and use in source and binary forms, with or without
17 : * modification, are permitted provided that the following conditions
18 : * are met:
19 : *
20 : * Redistributions of source code must retain the above copyright
21 : * notice, this list of conditions and the following disclaimer.
22 : *
23 : * Redistributions in binary form must reproduce the above
24 : * copyright notice, this list of conditions and the following
25 : * disclaimer in the documentation and/or other materials provided
26 : * with the distribution.
27 : *
28 : * Neither the name of the Cisco Systems, Inc. nor the names of its
29 : * contributors may be used to endorse or promote products derived
30 : * from this software without specific prior written permission.
31 : *
32 : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 : * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 : * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 : * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 : * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
37 : * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
38 : * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
39 : * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 : * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 : * OF THE POSSIBILITY OF SUCH DAMAGE.
44 : *
45 : */
46 :
47 : #include "cipher.h"
48 : #include "rand_source.h" /* used in invertibiltiy tests */
49 : #include "alloc.h" /* for crypto_alloc(), crypto_free() */
50 :
51 : debug_module_t mod_cipher = {
52 : 0, /* debugging is off by default */
53 : "cipher" /* printable module name */
54 : };
55 :
56 : err_status_t
57 0 : cipher_output(cipher_t *c, uint8_t *buffer, int num_octets_to_output) {
58 :
59 : /* zeroize the buffer */
60 0 : octet_string_set_to_zero(buffer, num_octets_to_output);
61 :
62 : /* exor keystream into buffer */
63 0 : return cipher_encrypt(c, buffer, (unsigned int *) &num_octets_to_output);
64 : }
65 :
66 : /* some bookkeeping functions */
67 :
68 : int
69 0 : cipher_get_key_length(const cipher_t *c) {
70 0 : return c->key_len;
71 : }
72 :
73 : /*
74 : * cipher_type_test(ct, test_data) tests a cipher of type ct against
75 : * test cases provided in a list test_data of values of key, salt, iv,
76 : * plaintext, and ciphertext that is known to be good
77 : */
78 :
79 : #define SELF_TEST_BUF_OCTETS 128
80 : #define NUM_RAND_TESTS 128
81 : #define MAX_KEY_LEN 64
82 :
83 : err_status_t
84 0 : cipher_type_test(const cipher_type_t *ct, const cipher_test_case_t *test_data) {
85 0 : const cipher_test_case_t *test_case = test_data;
86 : cipher_t *c;
87 : err_status_t status;
88 : uint8_t buffer[SELF_TEST_BUF_OCTETS];
89 : uint8_t buffer2[SELF_TEST_BUF_OCTETS];
90 : unsigned int len;
91 0 : int i, j, case_num = 0;
92 :
93 : debug_print(mod_cipher, "running self-test for cipher %s",
94 : ct->description);
95 :
96 : /*
97 : * check to make sure that we have at least one test case, and
98 : * return an error if we don't - we need to be paranoid here
99 : */
100 0 : if (test_case == NULL)
101 0 : return err_status_cant_check;
102 :
103 : /*
104 : * loop over all test cases, perform known-answer tests of both the
105 : * encryption and decryption functions
106 : */
107 0 : while (test_case != NULL) {
108 :
109 : /* allocate cipher */
110 0 : status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
111 0 : if (status)
112 0 : return status;
113 :
114 : /*
115 : * test the encrypt function
116 : */
117 : debug_print(mod_cipher, "testing encryption", NULL);
118 :
119 : /* initialize cipher */
120 0 : status = cipher_init(c, test_case->key, direction_encrypt);
121 0 : if (status) {
122 0 : cipher_dealloc(c);
123 0 : return status;
124 : }
125 :
126 : /* copy plaintext into test buffer */
127 0 : if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {
128 0 : cipher_dealloc(c);
129 0 : return err_status_bad_param;
130 : }
131 0 : for (i=0; i < test_case->plaintext_length_octets; i++)
132 0 : buffer[i] = test_case->plaintext[i];
133 :
134 : debug_print(mod_cipher, "plaintext: %s",
135 : octet_string_hex_string(buffer,
136 : test_case->plaintext_length_octets));
137 :
138 : /* set the initialization vector */
139 0 : status = cipher_set_iv(c, test_case->idx);
140 0 : if (status) {
141 0 : cipher_dealloc(c);
142 0 : return status;
143 : }
144 :
145 : /* encrypt */
146 0 : len = test_case->plaintext_length_octets;
147 0 : status = cipher_encrypt(c, buffer, &len);
148 0 : if (status) {
149 0 : cipher_dealloc(c);
150 0 : return status;
151 : }
152 :
153 : debug_print(mod_cipher, "ciphertext: %s",
154 : octet_string_hex_string(buffer,
155 : test_case->ciphertext_length_octets));
156 :
157 : /* compare the resulting ciphertext with that in the test case */
158 0 : if (len != (unsigned int)test_case->ciphertext_length_octets)
159 0 : return err_status_algo_fail;
160 0 : status = err_status_ok;
161 0 : for (i=0; i < test_case->ciphertext_length_octets; i++)
162 0 : if (buffer[i] != test_case->ciphertext[i]) {
163 0 : status = err_status_algo_fail;
164 : debug_print(mod_cipher, "test case %d failed", case_num);
165 : debug_print(mod_cipher, "(failure at byte %d)", i);
166 0 : break;
167 : }
168 0 : if (status) {
169 :
170 : debug_print(mod_cipher, "c computed: %s",
171 : octet_string_hex_string(buffer,
172 : 2*test_case->plaintext_length_octets));
173 : debug_print(mod_cipher, "c expected: %s",
174 : octet_string_hex_string(test_case->ciphertext,
175 : 2*test_case->plaintext_length_octets));
176 :
177 0 : cipher_dealloc(c);
178 0 : return err_status_algo_fail;
179 : }
180 :
181 : /*
182 : * test the decrypt function
183 : */
184 : debug_print(mod_cipher, "testing decryption", NULL);
185 :
186 : /* re-initialize cipher for decryption */
187 0 : status = cipher_init(c, test_case->key, direction_decrypt);
188 0 : if (status) {
189 0 : cipher_dealloc(c);
190 0 : return status;
191 : }
192 :
193 : /* copy ciphertext into test buffer */
194 0 : if (test_case->ciphertext_length_octets > SELF_TEST_BUF_OCTETS) {
195 0 : cipher_dealloc(c);
196 0 : return err_status_bad_param;
197 : }
198 0 : for (i=0; i < test_case->ciphertext_length_octets; i++)
199 0 : buffer[i] = test_case->ciphertext[i];
200 :
201 : debug_print(mod_cipher, "ciphertext: %s",
202 : octet_string_hex_string(buffer,
203 : test_case->plaintext_length_octets));
204 :
205 : /* set the initialization vector */
206 0 : status = cipher_set_iv(c, test_case->idx);
207 0 : if (status) {
208 0 : cipher_dealloc(c);
209 0 : return status;
210 : }
211 :
212 : /* decrypt */
213 0 : len = test_case->ciphertext_length_octets;
214 0 : status = cipher_decrypt(c, buffer, &len);
215 0 : if (status) {
216 0 : cipher_dealloc(c);
217 0 : return status;
218 : }
219 :
220 : debug_print(mod_cipher, "plaintext: %s",
221 : octet_string_hex_string(buffer,
222 : test_case->plaintext_length_octets));
223 :
224 : /* compare the resulting plaintext with that in the test case */
225 0 : if (len != (unsigned int)test_case->plaintext_length_octets)
226 0 : return err_status_algo_fail;
227 0 : status = err_status_ok;
228 0 : for (i=0; i < test_case->plaintext_length_octets; i++)
229 0 : if (buffer[i] != test_case->plaintext[i]) {
230 0 : status = err_status_algo_fail;
231 : debug_print(mod_cipher, "test case %d failed", case_num);
232 : debug_print(mod_cipher, "(failure at byte %d)", i);
233 : }
234 0 : if (status) {
235 :
236 : debug_print(mod_cipher, "p computed: %s",
237 : octet_string_hex_string(buffer,
238 : 2*test_case->plaintext_length_octets));
239 : debug_print(mod_cipher, "p expected: %s",
240 : octet_string_hex_string(test_case->plaintext,
241 : 2*test_case->plaintext_length_octets));
242 :
243 0 : cipher_dealloc(c);
244 0 : return err_status_algo_fail;
245 : }
246 :
247 : /* deallocate the cipher */
248 0 : status = cipher_dealloc(c);
249 0 : if (status)
250 0 : return status;
251 :
252 : /*
253 : * the cipher passed the test case, so move on to the next test
254 : * case in the list; if NULL, we'l proceed to the next test
255 : */
256 0 : test_case = test_case->next_test_case;
257 0 : ++case_num;
258 : }
259 :
260 : /* now run some random invertibility tests */
261 :
262 : /* allocate cipher, using paramaters from the first test case */
263 0 : test_case = test_data;
264 0 : status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
265 0 : if (status)
266 0 : return status;
267 :
268 0 : rand_source_init();
269 :
270 0 : for (j=0; j < NUM_RAND_TESTS; j++) {
271 : unsigned length;
272 : int plaintext_len;
273 : uint8_t key[MAX_KEY_LEN];
274 : uint8_t iv[MAX_KEY_LEN];
275 :
276 : /* choose a length at random (leaving room for IV and padding) */
277 0 : length = rand() % (SELF_TEST_BUF_OCTETS - 64);
278 : debug_print(mod_cipher, "random plaintext length %d\n", length);
279 0 : status = rand_source_get_octet_string(buffer, length);
280 0 : if (status) return status;
281 :
282 : debug_print(mod_cipher, "plaintext: %s",
283 : octet_string_hex_string(buffer, length));
284 :
285 : /* copy plaintext into second buffer */
286 0 : for (i=0; (unsigned int)i < length; i++)
287 0 : buffer2[i] = buffer[i];
288 :
289 : /* choose a key at random */
290 0 : if (test_case->key_length_octets > MAX_KEY_LEN)
291 0 : return err_status_cant_check;
292 0 : status = rand_source_get_octet_string(key, test_case->key_length_octets);
293 0 : if (status) return status;
294 :
295 : /* chose a random initialization vector */
296 0 : status = rand_source_get_octet_string(iv, MAX_KEY_LEN);
297 0 : if (status) return status;
298 :
299 : /* initialize cipher */
300 0 : status = cipher_init(c, key, direction_encrypt);
301 0 : if (status) {
302 0 : cipher_dealloc(c);
303 0 : return status;
304 : }
305 :
306 : /* set initialization vector */
307 0 : status = cipher_set_iv(c, test_case->idx);
308 0 : if (status) {
309 0 : cipher_dealloc(c);
310 0 : return status;
311 : }
312 :
313 : /* encrypt buffer with cipher */
314 0 : plaintext_len = length;
315 0 : status = cipher_encrypt(c, buffer, &length);
316 0 : if (status) {
317 0 : cipher_dealloc(c);
318 0 : return status;
319 : }
320 : debug_print(mod_cipher, "ciphertext: %s",
321 : octet_string_hex_string(buffer, length));
322 :
323 : /*
324 : * re-initialize cipher for decryption, re-set the iv, then
325 : * decrypt the ciphertext
326 : */
327 0 : status = cipher_init(c, key, direction_decrypt);
328 0 : if (status) {
329 0 : cipher_dealloc(c);
330 0 : return status;
331 : }
332 0 : status = cipher_set_iv(c, test_case->idx);
333 0 : if (status) {
334 0 : cipher_dealloc(c);
335 0 : return status;
336 : }
337 0 : status = cipher_decrypt(c, buffer, &length);
338 0 : if (status) {
339 0 : cipher_dealloc(c);
340 0 : return status;
341 : }
342 :
343 : debug_print(mod_cipher, "plaintext[2]: %s",
344 : octet_string_hex_string(buffer, length));
345 :
346 : /* compare the resulting plaintext with the original one */
347 0 : if (length != (unsigned)plaintext_len)
348 0 : return err_status_algo_fail;
349 0 : status = err_status_ok;
350 0 : for (i=0; i < plaintext_len; i++)
351 0 : if (buffer[i] != buffer2[i]) {
352 0 : status = err_status_algo_fail;
353 : debug_print(mod_cipher, "random test case %d failed", case_num);
354 : debug_print(mod_cipher, "(failure at byte %d)", i);
355 : }
356 0 : if (status) {
357 0 : cipher_dealloc(c);
358 0 : return err_status_algo_fail;
359 : }
360 :
361 : }
362 :
363 0 : status = cipher_dealloc(c);
364 0 : if (status)
365 0 : return status;
366 :
367 0 : return err_status_ok;
368 : }
369 :
370 :
371 : /*
372 : * cipher_type_self_test(ct) performs cipher_type_test on ct's internal
373 : * list of test data.
374 : */
375 :
376 : err_status_t
377 0 : cipher_type_self_test(const cipher_type_t *ct) {
378 0 : return cipher_type_test(ct, ct->test_data);
379 : }
380 :
381 : /*
382 : * cipher_bits_per_second(c, l, t) computes (an estimate of) the
383 : * number of bits that a cipher implementation can encrypt in a second
384 : *
385 : * c is a cipher (which MUST be allocated and initialized already), l
386 : * is the length in octets of the test data to be encrypted, and t is
387 : * the number of trials
388 : *
389 : * if an error is encountered, the value 0 is returned
390 : */
391 :
392 : uint64_t
393 0 : cipher_bits_per_second(cipher_t *c, int octets_in_buffer, int num_trials) {
394 : int i;
395 : v128_t nonce;
396 : clock_t timer;
397 : unsigned char *enc_buf;
398 0 : unsigned int len = octets_in_buffer;
399 :
400 0 : enc_buf = (unsigned char*) crypto_alloc(octets_in_buffer);
401 0 : if (enc_buf == NULL)
402 0 : return 0; /* indicate bad parameters by returning null */
403 :
404 : /* time repeated trials */
405 0 : v128_set_to_zero(&nonce);
406 0 : timer = clock();
407 0 : for(i=0; i < num_trials; i++, nonce.v32[3] = i) {
408 0 : cipher_set_iv(c, &nonce);
409 0 : cipher_encrypt(c, enc_buf, &len);
410 : }
411 0 : timer = clock() - timer;
412 :
413 0 : crypto_free(enc_buf);
414 :
415 0 : if (timer == 0) {
416 : /* Too fast! */
417 0 : return 0;
418 : }
419 :
420 0 : return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer;
421 : }
|