Line data Source code
1 : /*
2 : * sha1.c
3 : *
4 : * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
5 : * specified in FIPS 180-1
6 : *
7 : * David A. McGrew
8 : * Cisco Systems, Inc.
9 : */
10 :
11 : /*
12 : *
13 : * Copyright (c) 2001-2006, Cisco Systems, Inc.
14 : * All rights reserved.
15 : *
16 : * Redistribution and use in source and binary forms, with or without
17 : * modification, are permitted provided that the following conditions
18 : * are met:
19 : *
20 : * Redistributions of source code must retain the above copyright
21 : * notice, this list of conditions and the following disclaimer.
22 : *
23 : * Redistributions in binary form must reproduce the above
24 : * copyright notice, this list of conditions and the following
25 : * disclaimer in the documentation and/or other materials provided
26 : * with the distribution.
27 : *
28 : * Neither the name of the Cisco Systems, Inc. nor the names of its
29 : * contributors may be used to endorse or promote products derived
30 : * from this software without specific prior written permission.
31 : *
32 : * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 : * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 : * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 : * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 : * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
37 : * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
38 : * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
39 : * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 : * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 : * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 : * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 : * OF THE POSSIBILITY OF SUCH DAMAGE.
44 : *
45 : */
46 :
47 :
48 : #include "sha1.h"
49 :
50 : debug_module_t mod_sha1 = {
51 : 0, /* debugging is off by default */
52 : "sha-1" /* printable module name */
53 : };
54 :
55 : /* SN == Rotate left N bits */
56 : #define S1(X) ((X << 1) | (X >> 31))
57 : #define S5(X) ((X << 5) | (X >> 27))
58 : #define S30(X) ((X << 30) | (X >> 2))
59 :
60 : #define f0(B,C,D) ((B & C) | (~B & D))
61 : #define f1(B,C,D) (B ^ C ^ D)
62 : #define f2(B,C,D) ((B & C) | (B & D) | (C & D))
63 : #define f3(B,C,D) (B ^ C ^ D)
64 :
65 : /*
66 : * nota bene: the variable K0 appears in the curses library, so we
67 : * give longer names to these variables to avoid spurious warnings
68 : * on systems that uses curses
69 : */
70 :
71 : uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
72 : uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
73 : uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
74 : uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
75 :
76 : void
77 0 : sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) {
78 : sha1_ctx_t ctx;
79 :
80 0 : sha1_init(&ctx);
81 0 : sha1_update(&ctx, msg, octets_in_msg);
82 0 : sha1_final(&ctx, hash_value);
83 :
84 0 : }
85 :
86 : /*
87 : * sha1_core(M, H) computes the core compression function, where M is
88 : * the next part of the message (in network byte order) and H is the
89 : * intermediate state { H0, H1, ...} (in host byte order)
90 : *
91 : * this function does not do any of the padding required in the
92 : * complete SHA1 function
93 : *
94 : * this function is used in the SEAL 3.0 key setup routines
95 : * (crypto/cipher/seal.c)
96 : */
97 :
98 : void
99 0 : sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
100 : uint32_t H0;
101 : uint32_t H1;
102 : uint32_t H2;
103 : uint32_t H3;
104 : uint32_t H4;
105 : uint32_t W[80];
106 : uint32_t A, B, C, D, E, TEMP;
107 : int t;
108 :
109 : /* copy hash_value into H0, H1, H2, H3, H4 */
110 0 : H0 = hash_value[0];
111 0 : H1 = hash_value[1];
112 0 : H2 = hash_value[2];
113 0 : H3 = hash_value[3];
114 0 : H4 = hash_value[4];
115 :
116 : /* copy/xor message into array */
117 :
118 0 : W[0] = be32_to_cpu(M[0]);
119 0 : W[1] = be32_to_cpu(M[1]);
120 0 : W[2] = be32_to_cpu(M[2]);
121 0 : W[3] = be32_to_cpu(M[3]);
122 0 : W[4] = be32_to_cpu(M[4]);
123 0 : W[5] = be32_to_cpu(M[5]);
124 0 : W[6] = be32_to_cpu(M[6]);
125 0 : W[7] = be32_to_cpu(M[7]);
126 0 : W[8] = be32_to_cpu(M[8]);
127 0 : W[9] = be32_to_cpu(M[9]);
128 0 : W[10] = be32_to_cpu(M[10]);
129 0 : W[11] = be32_to_cpu(M[11]);
130 0 : W[12] = be32_to_cpu(M[12]);
131 0 : W[13] = be32_to_cpu(M[13]);
132 0 : W[14] = be32_to_cpu(M[14]);
133 0 : W[15] = be32_to_cpu(M[15]);
134 0 : TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP);
135 0 : TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP);
136 0 : TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP);
137 0 : TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP);
138 0 : TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP);
139 0 : TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP);
140 0 : TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP);
141 0 : TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP);
142 0 : TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP);
143 0 : TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP);
144 0 : TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
145 0 : TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
146 0 : TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
147 0 : TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
148 0 : TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
149 0 : TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
150 :
151 : /* process the remainder of the array */
152 0 : for (t=32; t < 80; t++) {
153 0 : TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
154 0 : W[t] = S1(TEMP);
155 : }
156 :
157 0 : A = H0; B = H1; C = H2; D = H3; E = H4;
158 :
159 0 : for (t=0; t < 20; t++) {
160 0 : TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
161 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
162 : }
163 0 : for ( ; t < 40; t++) {
164 0 : TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
165 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
166 : }
167 0 : for ( ; t < 60; t++) {
168 0 : TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
169 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
170 : }
171 0 : for ( ; t < 80; t++) {
172 0 : TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
173 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
174 : }
175 :
176 0 : hash_value[0] = H0 + A;
177 0 : hash_value[1] = H1 + B;
178 0 : hash_value[2] = H2 + C;
179 0 : hash_value[3] = H3 + D;
180 0 : hash_value[4] = H4 + E;
181 :
182 0 : return;
183 : }
184 :
185 : void
186 0 : sha1_init(sha1_ctx_t *ctx) {
187 :
188 : /* initialize state vector */
189 0 : ctx->H[0] = 0x67452301;
190 0 : ctx->H[1] = 0xefcdab89;
191 0 : ctx->H[2] = 0x98badcfe;
192 0 : ctx->H[3] = 0x10325476;
193 0 : ctx->H[4] = 0xc3d2e1f0;
194 :
195 : /* indicate that message buffer is empty */
196 0 : ctx->octets_in_buffer = 0;
197 :
198 : /* reset message bit-count to zero */
199 0 : ctx->num_bits_in_msg = 0;
200 :
201 0 : }
202 :
203 : void
204 0 : sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
205 : int i;
206 0 : uint8_t *buf = (uint8_t *)ctx->M;
207 :
208 : /* update message bit-count */
209 0 : ctx->num_bits_in_msg += octets_in_msg * 8;
210 :
211 : /* loop over 16-word blocks of M */
212 0 : while (octets_in_msg > 0) {
213 :
214 0 : if (octets_in_msg + ctx->octets_in_buffer >= 64) {
215 :
216 : /*
217 : * copy words of M into msg buffer until that buffer is full,
218 : * converting them into host byte order as needed
219 : */
220 0 : octets_in_msg -= (64 - ctx->octets_in_buffer);
221 0 : for (i=ctx->octets_in_buffer; i < 64; i++)
222 0 : buf[i] = *msg++;
223 0 : ctx->octets_in_buffer = 0;
224 :
225 : /* process a whole block */
226 :
227 : debug_print(mod_sha1, "(update) running sha1_core()", NULL);
228 :
229 0 : sha1_core(ctx->M, ctx->H);
230 :
231 : } else {
232 :
233 : debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
234 :
235 0 : for (i=ctx->octets_in_buffer;
236 0 : i < (ctx->octets_in_buffer + octets_in_msg); i++)
237 0 : buf[i] = *msg++;
238 0 : ctx->octets_in_buffer += octets_in_msg;
239 0 : octets_in_msg = 0;
240 : }
241 :
242 : }
243 :
244 0 : }
245 :
246 : /*
247 : * sha1_final(ctx, output) computes the result for ctx and copies it
248 : * into the twenty octets located at *output
249 : */
250 :
251 : void
252 0 : sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
253 : uint32_t A, B, C, D, E, TEMP;
254 : uint32_t W[80];
255 : int i, t;
256 :
257 : /*
258 : * process the remaining octets_in_buffer, padding and terminating as
259 : * necessary
260 : */
261 : {
262 0 : int tail = ctx->octets_in_buffer % 4;
263 :
264 : /* copy/xor message into array */
265 0 : for (i=0; i < (ctx->octets_in_buffer+3)/4; i++)
266 0 : W[i] = be32_to_cpu(ctx->M[i]);
267 :
268 : /* set the high bit of the octet immediately following the message */
269 0 : switch (tail) {
270 : case (3):
271 0 : W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
272 0 : W[i] = 0x0;
273 0 : break;
274 : case (2):
275 0 : W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
276 0 : W[i] = 0x0;
277 0 : break;
278 : case (1):
279 0 : W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
280 0 : W[i] = 0x0;
281 0 : break;
282 : case (0):
283 0 : W[i] = 0x80000000;
284 0 : break;
285 : }
286 :
287 : /* zeroize remaining words */
288 0 : for (i++ ; i < 15; i++)
289 0 : W[i] = 0x0;
290 :
291 : /*
292 : * if there is room at the end of the word array, then set the
293 : * last word to the bit-length of the message; otherwise, set that
294 : * word to zero and then we need to do one more run of the
295 : * compression algo.
296 : */
297 0 : if (ctx->octets_in_buffer < 56)
298 0 : W[15] = ctx->num_bits_in_msg;
299 0 : else if (ctx->octets_in_buffer < 60)
300 0 : W[15] = 0x0;
301 :
302 : /* process the word array */
303 0 : for (t=16; t < 80; t++) {
304 0 : TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
305 0 : W[t] = S1(TEMP);
306 : }
307 :
308 0 : A = ctx->H[0];
309 0 : B = ctx->H[1];
310 0 : C = ctx->H[2];
311 0 : D = ctx->H[3];
312 0 : E = ctx->H[4];
313 :
314 0 : for (t=0; t < 20; t++) {
315 0 : TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
316 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
317 : }
318 0 : for ( ; t < 40; t++) {
319 0 : TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
320 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
321 : }
322 0 : for ( ; t < 60; t++) {
323 0 : TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
324 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
325 : }
326 0 : for ( ; t < 80; t++) {
327 0 : TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
328 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
329 : }
330 :
331 0 : ctx->H[0] += A;
332 0 : ctx->H[1] += B;
333 0 : ctx->H[2] += C;
334 0 : ctx->H[3] += D;
335 0 : ctx->H[4] += E;
336 :
337 : }
338 :
339 : debug_print(mod_sha1, "(final) running sha1_core()", NULL);
340 :
341 0 : if (ctx->octets_in_buffer >= 56) {
342 :
343 : debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
344 :
345 : /* we need to do one final run of the compression algo */
346 :
347 : /*
348 : * set initial part of word array to zeros, and set the
349 : * final part to the number of bits in the message
350 : */
351 0 : for (i=0; i < 15; i++)
352 0 : W[i] = 0x0;
353 0 : W[15] = ctx->num_bits_in_msg;
354 :
355 : /* process the word array */
356 0 : for (t=16; t < 80; t++) {
357 0 : TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
358 0 : W[t] = S1(TEMP);
359 : }
360 :
361 0 : A = ctx->H[0];
362 0 : B = ctx->H[1];
363 0 : C = ctx->H[2];
364 0 : D = ctx->H[3];
365 0 : E = ctx->H[4];
366 :
367 0 : for (t=0; t < 20; t++) {
368 0 : TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
369 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
370 : }
371 0 : for ( ; t < 40; t++) {
372 0 : TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
373 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
374 : }
375 0 : for ( ; t < 60; t++) {
376 0 : TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
377 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
378 : }
379 0 : for ( ; t < 80; t++) {
380 0 : TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
381 0 : E = D; D = C; C = S30(B); B = A; A = TEMP;
382 : }
383 :
384 0 : ctx->H[0] += A;
385 0 : ctx->H[1] += B;
386 0 : ctx->H[2] += C;
387 0 : ctx->H[3] += D;
388 0 : ctx->H[4] += E;
389 : }
390 :
391 : /* copy result into output buffer */
392 0 : output[0] = be32_to_cpu(ctx->H[0]);
393 0 : output[1] = be32_to_cpu(ctx->H[1]);
394 0 : output[2] = be32_to_cpu(ctx->H[2]);
395 0 : output[3] = be32_to_cpu(ctx->H[3]);
396 0 : output[4] = be32_to_cpu(ctx->H[4]);
397 :
398 : /* indicate that message buffer in context is empty */
399 0 : ctx->octets_in_buffer = 0;
400 :
401 0 : return;
402 : }
403 :
404 :
405 :
|