Line data Source code
1 : /*
2 : * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 : *
4 : * This source code is subject to the terms of the BSD 2 Clause License and
5 : * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 : * was not distributed with this source code in the LICENSE file, you can
7 : * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 : * Media Patent License 1.0 was not distributed with this source code in the
9 : * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 : */
11 :
12 : #include <math.h>
13 :
14 : #include "aom_ports/system_state.h"
15 :
16 : #include "av1/common/blockd.h"
17 : #include "av1/common/onyxc_int.h"
18 :
19 0 : PREDICTION_MODE av1_left_block_mode(const MODE_INFO *cur_mi,
20 : const MODE_INFO *left_mi, int b) {
21 0 : if (b == 0 || b == 2) {
22 0 : if (!left_mi || is_inter_block(&left_mi->mbmi)) return DC_PRED;
23 :
24 0 : return get_y_mode(left_mi, b + 1);
25 : } else {
26 0 : assert(b == 1 || b == 3);
27 0 : return cur_mi->bmi[b - 1].as_mode;
28 : }
29 : }
30 :
31 0 : PREDICTION_MODE av1_above_block_mode(const MODE_INFO *cur_mi,
32 : const MODE_INFO *above_mi, int b) {
33 0 : if (b == 0 || b == 1) {
34 0 : if (!above_mi || is_inter_block(&above_mi->mbmi)) return DC_PRED;
35 :
36 0 : return get_y_mode(above_mi, b + 2);
37 : } else {
38 0 : assert(b == 2 || b == 3);
39 0 : return cur_mi->bmi[b - 2].as_mode;
40 : }
41 : }
42 :
43 : #if CONFIG_COEF_INTERLEAVE
44 : void av1_foreach_transformed_block_interleave(
45 : const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
46 : foreach_transformed_block_visitor visit, void *arg) {
47 : const struct macroblockd_plane *const pd_y = &xd->plane[0];
48 : const struct macroblockd_plane *const pd_c = &xd->plane[1];
49 : const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
50 :
51 : const TX_SIZE tx_log2_y = mbmi->tx_size;
52 : const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c);
53 : const int tx_sz_y = (1 << tx_log2_y);
54 : const int tx_sz_c = (1 << tx_log2_c);
55 :
56 : const BLOCK_SIZE plane_bsize_y = get_plane_block_size(bsize, pd_y);
57 : const BLOCK_SIZE plane_bsize_c = get_plane_block_size(bsize, pd_c);
58 :
59 : const int num_4x4_w_y = num_4x4_blocks_wide_lookup[plane_bsize_y];
60 : const int num_4x4_w_c = num_4x4_blocks_wide_lookup[plane_bsize_c];
61 : const int num_4x4_h_y = num_4x4_blocks_high_lookup[plane_bsize_y];
62 : const int num_4x4_h_c = num_4x4_blocks_high_lookup[plane_bsize_c];
63 :
64 : const int step_y = 1 << (tx_log2_y << 1);
65 : const int step_c = 1 << (tx_log2_c << 1);
66 :
67 : const int max_4x4_w_y =
68 : get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, pd_y->subsampling_x);
69 : const int max_4x4_h_y =
70 : get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, pd_y->subsampling_y);
71 :
72 : const int extra_step_y = ((num_4x4_w_y - max_4x4_w_y) >> tx_log2_y) * step_y;
73 :
74 : const int max_4x4_w_c =
75 : get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, pd_c->subsampling_x);
76 : const int max_4x4_h_c =
77 : get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, pd_c->subsampling_y);
78 :
79 : const int extra_step_c = ((num_4x4_w_c - max_4x4_w_c) >> tx_log2_c) * step_c;
80 :
81 : // The max_4x4_w/h may be smaller than tx_sz under some corner cases,
82 : // i.e. when the SB is splitted by tile boundaries.
83 : const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y;
84 : const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y;
85 : const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c;
86 : const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c;
87 : const int tu_num_c = tu_num_w_c * tu_num_h_c;
88 :
89 : int tu_idx_c = 0;
90 : int offset_y, row_y, col_y;
91 : int offset_c, row_c, col_c;
92 :
93 : for (row_y = 0; row_y < tu_num_h_y; row_y++) {
94 : for (col_y = 0; col_y < tu_num_w_y; col_y++) {
95 : // luma
96 : offset_y = (row_y * tu_num_w_y + col_y) * step_y + row_y * extra_step_y;
97 : visit(0, offset_y, row_y * tx_sz_y, col_y * tx_sz_y, plane_bsize_y,
98 : tx_log2_y, arg);
99 : // chroma
100 : if (tu_idx_c < tu_num_c) {
101 : row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
102 : col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
103 : offset_c = tu_idx_c * step_c + (tu_idx_c / tu_num_w_c) * extra_step_c;
104 : visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
105 : visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
106 : tu_idx_c++;
107 : }
108 : }
109 : }
110 :
111 : // In 422 case, it's possible that Chroma has more TUs than Luma
112 : while (tu_idx_c < tu_num_c) {
113 : row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c;
114 : col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c;
115 : offset_c = tu_idx_c * step_c + row_c * extra_step_c;
116 : visit(1, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
117 : visit(2, offset_c, row_c, col_c, plane_bsize_c, tx_log2_c, arg);
118 : tu_idx_c++;
119 : }
120 : }
121 : #endif
122 :
123 0 : void av1_foreach_transformed_block_in_plane(
124 : const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
125 : foreach_transformed_block_visitor visit, void *arg) {
126 0 : const struct macroblockd_plane *const pd = &xd->plane[plane];
127 : // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
128 : // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
129 : // transform size varies per plane, look it up in a common way.
130 0 : const TX_SIZE tx_size = get_tx_size(plane, xd);
131 : #if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
132 0 : const BLOCK_SIZE plane_bsize =
133 0 : AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
134 : #else
135 : const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
136 : #endif
137 0 : const uint8_t txw_unit = tx_size_wide_unit[tx_size];
138 0 : const uint8_t txh_unit = tx_size_high_unit[tx_size];
139 0 : const int step = txw_unit * txh_unit;
140 0 : int i = 0, r, c;
141 :
142 : // If mb_to_right_edge is < 0 we are in a situation in which
143 : // the current block size extends into the UMV and we won't
144 : // visit the sub blocks that are wholly within the UMV.
145 0 : const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
146 0 : const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
147 :
148 : // Keep track of the row and column of the blocks we use so that we know
149 : // if we are in the unrestricted motion border.
150 0 : for (r = 0; r < max_blocks_high; r += txh_unit) {
151 : // Skip visiting the sub blocks that are wholly within the UMV.
152 0 : for (c = 0; c < max_blocks_wide; c += txw_unit) {
153 0 : visit(plane, i, r, c, plane_bsize, tx_size, arg);
154 0 : i += step;
155 : }
156 : }
157 0 : }
158 :
159 : #if CONFIG_LV_MAP
160 : void av1_foreach_transformed_block(const MACROBLOCKD *const xd,
161 : BLOCK_SIZE bsize, int mi_row, int mi_col,
162 : foreach_transformed_block_visitor visit,
163 : void *arg) {
164 : int plane;
165 :
166 : for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
167 : #if CONFIG_CB4X4
168 : if (!is_chroma_reference(mi_row, mi_col, bsize,
169 : xd->plane[plane].subsampling_x,
170 : xd->plane[plane].subsampling_y))
171 : continue;
172 : #else
173 : (void)mi_row;
174 : (void)mi_col;
175 : #endif
176 : av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
177 : }
178 : }
179 : #endif
180 :
181 : #if CONFIG_DAALA_DIST
182 : void av1_foreach_8x8_transformed_block_in_yplane(
183 : const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
184 : foreach_transformed_block_visitor visit,
185 : foreach_transformed_block_visitor mi_visit, void *arg) {
186 : const struct macroblockd_plane *const pd = &xd->plane[0];
187 : // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
188 : // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
189 : // transform size varies per plane, look it up in a common way.
190 : const TX_SIZE tx_size = get_tx_size(0, xd);
191 : const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
192 : const uint8_t txw_unit = tx_size_wide_unit[tx_size];
193 : const uint8_t txh_unit = tx_size_high_unit[tx_size];
194 : const int step = txw_unit * txh_unit;
195 : int i = 0, r, c;
196 :
197 : // If mb_to_right_edge is < 0 we are in a situation in which
198 : // the current block size extends into the UMV and we won't
199 : // visit the sub blocks that are wholly within the UMV.
200 : const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
201 : const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
202 : const int skip_check_r = tx_size_high[tx_size] == 8 ? 1 : 0;
203 : const int skip_check_c = tx_size_wide[tx_size] == 8 ? 1 : 0;
204 :
205 : assert(plane_bsize >= BLOCK_8X8);
206 : assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
207 :
208 : // Keep track of the row and column of the blocks we use so that we know
209 : // if we are in the unrestricted motion border.
210 : for (r = 0; r < max_blocks_high; r += txh_unit) {
211 : // Skip visiting the sub blocks that are wholly within the UMV.
212 : for (c = 0; c < max_blocks_wide; c += txw_unit) {
213 : visit(0, i, r, c, plane_bsize, tx_size, arg);
214 : // Call whenever each 8x8 tx block is done
215 : if (((r & txh_unit) || skip_check_r) && ((c & txw_unit) || skip_check_c))
216 : mi_visit(0, i, r - (1 - skip_check_r) * txh_unit,
217 : c - (1 - skip_check_c) * txw_unit, plane_bsize, tx_size, arg);
218 : i += step;
219 : }
220 : }
221 : }
222 : #endif
223 :
224 : #if !CONFIG_PVQ || CONFIG_VAR_TX
225 0 : void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
226 : int plane, TX_SIZE tx_size, int has_eob, int aoff,
227 : int loff) {
228 0 : ENTROPY_CONTEXT *const a = pd->above_context + aoff;
229 0 : ENTROPY_CONTEXT *const l = pd->left_context + loff;
230 0 : const int txs_wide = tx_size_wide_unit[tx_size];
231 0 : const int txs_high = tx_size_high_unit[tx_size];
232 : #if CONFIG_CB4X4
233 0 : const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
234 : #else
235 : const BLOCK_SIZE bsize = AOMMAX(xd->mi[0]->mbmi.sb_type, BLOCK_8X8);
236 : #endif
237 0 : const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
238 :
239 : // above
240 0 : if (has_eob && xd->mb_to_right_edge < 0) {
241 : int i;
242 0 : const int blocks_wide = max_block_wide(xd, plane_bsize, plane);
243 0 : int above_contexts = txs_wide;
244 0 : if (above_contexts + aoff > blocks_wide)
245 0 : above_contexts = blocks_wide - aoff;
246 :
247 0 : for (i = 0; i < above_contexts; ++i) a[i] = has_eob;
248 0 : for (i = above_contexts; i < txs_wide; ++i) a[i] = 0;
249 : } else {
250 0 : memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * txs_wide);
251 : }
252 :
253 : // left
254 0 : if (has_eob && xd->mb_to_bottom_edge < 0) {
255 : int i;
256 0 : const int blocks_high = max_block_high(xd, plane_bsize, plane);
257 0 : int left_contexts = txs_high;
258 0 : if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff;
259 :
260 0 : for (i = 0; i < left_contexts; ++i) l[i] = has_eob;
261 0 : for (i = left_contexts; i < txs_high; ++i) l[i] = 0;
262 : } else {
263 0 : memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * txs_high);
264 : }
265 0 : }
266 : #endif
267 :
268 0 : void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
269 : BLOCK_SIZE bsize) {
270 : int i;
271 : int nplanes;
272 : #if CONFIG_CB4X4
273 : int chroma_ref;
274 0 : chroma_ref =
275 0 : is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
276 : xd->plane[1].subsampling_y);
277 0 : nplanes = 1 + (MAX_MB_PLANE - 1) * chroma_ref;
278 : #else
279 : (void)mi_row;
280 : (void)mi_col;
281 : nplanes = MAX_MB_PLANE;
282 : #endif
283 0 : for (i = 0; i < nplanes; i++) {
284 0 : struct macroblockd_plane *const pd = &xd->plane[i];
285 : #if CONFIG_CHROMA_2X2 || !CONFIG_CB4X4
286 : const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
287 : #else
288 0 : const BLOCK_SIZE plane_bsize =
289 0 : AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
290 : #endif
291 0 : const int txs_wide = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
292 0 : const int txs_high = block_size_high[plane_bsize] >> tx_size_high_log2[0];
293 0 : memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
294 0 : memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
295 : }
296 0 : }
297 :
298 0 : void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) {
299 : int i;
300 :
301 0 : for (i = 0; i < MAX_MB_PLANE; i++) {
302 0 : xd->plane[i].plane_type = get_plane_type(i);
303 0 : xd->plane[i].subsampling_x = i ? ss_x : 0;
304 0 : xd->plane[i].subsampling_y = i ? ss_y : 0;
305 : }
306 0 : }
307 :
308 : #if CONFIG_EXT_INTRA
309 : const int16_t dr_intra_derivative[90] = {
310 : 1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204,
311 : 1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548,
312 : 524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327,
313 : 316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207,
314 : 200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124,
315 : 119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59,
316 : 54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4,
317 : };
318 :
319 : #if CONFIG_INTRA_INTERP
320 : int av1_is_intra_filter_switchable(int angle) {
321 : assert(angle > 0 && angle < 270);
322 : if (angle % 45 == 0) return 0;
323 : if (angle > 90 && angle < 180) {
324 : return 1;
325 : } else {
326 : return ((angle < 90 ? dr_intra_derivative[angle]
327 : : dr_intra_derivative[270 - angle]) &
328 : 0xFF) > 0;
329 : }
330 : }
331 : #endif // CONFIG_INTRA_INTERP
332 : #endif // CONFIG_EXT_INTRA
|