LCOV - code coverage report
Current view: top level - third_party/aom/av1/common - reconinter.h (source / functions) Hit Total Coverage
Test: output.info Lines: 0 175 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 24 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
       3             :  *
       4             :  * This source code is subject to the terms of the BSD 2 Clause License and
       5             :  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
       6             :  * was not distributed with this source code in the LICENSE file, you can
       7             :  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
       8             :  * Media Patent License 1.0 was not distributed with this source code in the
       9             :  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
      10             :  */
      11             : 
      12             : #ifndef AV1_COMMON_RECONINTER_H_
      13             : #define AV1_COMMON_RECONINTER_H_
      14             : 
      15             : #include "av1/common/filter.h"
      16             : #include "av1/common/onyxc_int.h"
      17             : #include "av1/common/convolve.h"
      18             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
      19             : #include "av1/common/warped_motion.h"
      20             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
      21             : #include "aom/aom_integer.h"
      22             : 
      23             : #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
      24             : #define WARP_WM_NEIGHBORS_WITH_OBMC 0
      25             : #endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
      26             : 
      27             : #if CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
      28             : #define WARP_GM_NEIGHBORS_WITH_OBMC 0
      29             : #endif  // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
      30             : 
      31             : #ifdef __cplusplus
      32             : extern "C" {
      33             : #endif
      34             : 
      35           0 : static INLINE int has_scale(int xs, int ys) { return xs != 16 || ys != 16; }
      36             : 
      37           0 : static INLINE void inter_predictor(const uint8_t *src, int src_stride,
      38             :                                    uint8_t *dst, int dst_stride, int subpel_x,
      39             :                                    int subpel_y, const struct scale_factors *sf,
      40             :                                    int w, int h, ConvolveParams *conv_params,
      41             : #if CONFIG_DUAL_FILTER
      42             :                                    const InterpFilter *interp_filter,
      43             : #else
      44             :                                    const InterpFilter interp_filter,
      45             : #endif
      46             :                                    int xs, int ys) {
      47             : #if CONFIG_DUAL_FILTER
      48           0 :   const InterpFilter filter_x = av1_get_plane_interp_filter(
      49           0 :       interp_filter[1 + 2 * conv_params->ref], conv_params->plane);
      50           0 :   const InterpFilter filter_y = av1_get_plane_interp_filter(
      51           0 :       interp_filter[0 + 2 * conv_params->ref], conv_params->plane);
      52           0 :   const InterpFilterParams interp_filter_params_x =
      53             :       av1_get_interp_filter_params(filter_x);
      54           0 :   const InterpFilterParams interp_filter_params_y =
      55             :       av1_get_interp_filter_params(filter_y);
      56             : #else
      57             :   const InterpFilterParams interp_filter_params_x =
      58             :       av1_get_interp_filter_params(interp_filter);
      59             :   const InterpFilterParams interp_filter_params_y = interp_filter_params_x;
      60             : #endif
      61             : 
      62           0 :   assert(sf);
      63           0 :   if (has_scale(xs, ys)) {
      64           0 :     av1_convolve_c(src, src_stride, dst, dst_stride, w, h, interp_filter,
      65             :                    subpel_x, xs, subpel_y, ys, conv_params);
      66           0 :   } else if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
      67             : #if CONFIG_CONVOLVE_ROUND
      68             :     av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
      69             : #if CONFIG_DUAL_FILTER
      70             :                            interp_filter,
      71             : #else   // CONFIG_DUAL_FILTER
      72             :                            &interp_filter,
      73             : #endif  // CONFIG_DUAL_FILTER
      74             :                            subpel_x, xs, subpel_y, ys, conv_params);
      75             :     conv_params->do_post_rounding = 1;
      76             : #else
      77           0 :     assert(0);
      78             : #endif  // CONFIG_CONVOLVE_ROUND
      79             :   } else {
      80           0 :     assert(conv_params->round == CONVOLVE_OPT_ROUND);
      81           0 :     if (w <= 2 || h <= 2) {
      82           0 :       av1_convolve_c(src, src_stride, dst, dst_stride, w, h, interp_filter,
      83             :                      subpel_x, xs, subpel_y, ys, conv_params);
      84           0 :     } else if (interp_filter_params_x.taps == SUBPEL_TAPS &&
      85           0 :                interp_filter_params_y.taps == SUBPEL_TAPS) {
      86           0 :       const int16_t *kernel_x =
      87             :           av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
      88           0 :       const int16_t *kernel_y =
      89             :           av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
      90           0 :       sf->predict[subpel_x != 0][subpel_y != 0][conv_params->ref](
      91             :           src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
      92             :     } else {
      93           0 :       av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
      94             :                    subpel_x, xs, subpel_y, ys, conv_params);
      95             :     }
      96             :   }
      97           0 : }
      98             : 
      99             : #if CONFIG_HIGHBITDEPTH
     100           0 : static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride,
     101             :                                           uint8_t *dst, int dst_stride,
     102             :                                           const int subpel_x,
     103             :                                           const int subpel_y,
     104             :                                           const struct scale_factors *sf, int w,
     105             :                                           int h, ConvolveParams *conv_params,
     106             : #if CONFIG_DUAL_FILTER
     107             :                                           const InterpFilter *interp_filter,
     108             : #else
     109             :                                           const InterpFilter interp_filter,
     110             : #endif
     111             :                                           int xs, int ys, int bd) {
     112           0 :   const int ref = conv_params->ref;
     113             :   // ref > 0 means this is the second reference frame
     114             :   // first reference frame's prediction result is already in dst
     115             :   // therefore we need to average the first and second results
     116           0 :   const int avg = ref > 0;
     117             : #if CONFIG_DUAL_FILTER
     118           0 :   const InterpFilterParams interp_filter_params_x =
     119           0 :       av1_get_interp_filter_params(interp_filter[1 + 2 * ref]);
     120           0 :   const InterpFilterParams interp_filter_params_y =
     121           0 :       av1_get_interp_filter_params(interp_filter[0 + 2 * ref]);
     122             : #else
     123             :   const InterpFilterParams interp_filter_params_x =
     124             :       av1_get_interp_filter_params(interp_filter);
     125             :   const InterpFilterParams interp_filter_params_y = interp_filter_params_x;
     126             : #endif
     127             : 
     128           0 :   if (has_scale(xs, ys)) {
     129           0 :     av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
     130             :                         subpel_x, xs, subpel_y, ys, avg, bd);
     131           0 :   } else if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
     132             : #if CONFIG_CONVOLVE_ROUND
     133             :     av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
     134             : #if CONFIG_DUAL_FILTER
     135             :                                   interp_filter,
     136             : #else   // CONFIG_DUAL_FILTER
     137             :                                   &interp_filter,
     138             : #endif  // CONFIG_DUAL_FILTER
     139             :                                   subpel_x, xs, subpel_y, ys, conv_params, bd);
     140             :     conv_params->do_post_rounding = 1;
     141             : #else
     142           0 :     assert(0);
     143             : #endif  // CONFIG_CONVOLVE_ROUND
     144             :   } else {
     145           0 :     if (interp_filter_params_x.taps == SUBPEL_TAPS &&
     146           0 :         interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
     147           0 :       const int16_t *kernel_x =
     148             :           av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
     149           0 :       const int16_t *kernel_y =
     150             :           av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
     151           0 :       sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
     152             :           src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h,
     153             :           bd);
     154             :     } else {
     155           0 :       av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
     156             :                           subpel_x, xs, subpel_y, ys, avg, bd);
     157             :     }
     158             :   }
     159           0 : }
     160             : #endif  // CONFIG_HIGHBITDEPTH
     161             : 
     162             : #if CONFIG_EXT_INTER
     163             : // Set to (1 << 5) if the 32-ary codebooks are used for any bock size
     164             : #define MAX_WEDGE_TYPES (1 << 4)
     165             : 
     166             : #define MAX_WEDGE_SIZE_LOG2 5  // 32x32
     167             : #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
     168             : #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)
     169             : 
     170             : #define WEDGE_WEIGHT_BITS 6
     171             : 
     172             : #define WEDGE_NONE -1
     173             : 
     174             : // Angles are with respect to horizontal anti-clockwise
     175             : typedef enum {
     176             :   WEDGE_HORIZONTAL = 0,
     177             :   WEDGE_VERTICAL = 1,
     178             :   WEDGE_OBLIQUE27 = 2,
     179             :   WEDGE_OBLIQUE63 = 3,
     180             :   WEDGE_OBLIQUE117 = 4,
     181             :   WEDGE_OBLIQUE153 = 5,
     182             :   WEDGE_DIRECTIONS
     183             : } WedgeDirectionType;
     184             : 
     185             : // 3-tuple: {direction, x_offset, y_offset}
     186             : typedef struct {
     187             :   WedgeDirectionType direction;
     188             :   int x_offset;
     189             :   int y_offset;
     190             : } wedge_code_type;
     191             : 
     192             : typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];
     193             : 
     194             : typedef struct {
     195             :   int bits;
     196             :   const wedge_code_type *codebook;
     197             :   uint8_t *signflip;
     198             :   int smoother;
     199             :   wedge_masks_type *masks;
     200             : } wedge_params_type;
     201             : 
     202             : extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES];
     203             : 
     204           0 : static INLINE int is_interinter_compound_used(COMPOUND_TYPE type,
     205             :                                               BLOCK_SIZE sb_type) {
     206             :   (void)sb_type;
     207           0 :   switch (type) {
     208           0 :     case COMPOUND_AVERAGE: return 1;
     209             : #if CONFIG_WEDGE
     210           0 :     case COMPOUND_WEDGE: return wedge_params_lookup[sb_type].bits > 0;
     211             : #endif  // CONFIG_WEDGE
     212             : #if CONFIG_COMPOUND_SEGMENT
     213           0 :     case COMPOUND_SEG: return sb_type >= BLOCK_8X8;
     214             : #endif  // CONFIG_COMPOUND_SEGMENT
     215           0 :     default: assert(0); return 0;
     216             :   }
     217             : }
     218             : 
     219           0 : static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) {
     220             :   COMPOUND_TYPE comp_type;
     221           0 :   for (comp_type = 0; comp_type < COMPOUND_TYPES; comp_type++) {
     222           0 :     if (is_masked_compound_type(comp_type) &&
     223           0 :         is_interinter_compound_used(comp_type, sb_type))
     224           0 :       return 1;
     225             :   }
     226           0 :   return 0;
     227             : }
     228             : 
     229           0 : static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) {
     230           0 :   return wedge_params_lookup[sb_type].bits;
     231             : }
     232             : 
     233           0 : static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) {
     234           0 :   const int wbits = wedge_params_lookup[sb_type].bits;
     235           0 :   return (wbits > 0) ? wbits + 1 : 0;
     236             : }
     237             : 
     238           0 : static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) {
     239             :   (void)sb_type;
     240           0 :   return wedge_params_lookup[sb_type].bits > 0;
     241             : }
     242             : 
     243           0 : static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) {
     244           0 :   return wedge_params_lookup[sb_type].bits;
     245             : }
     246             : 
     247             : #if CONFIG_COMPOUND_SEGMENT
     248             : void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
     249             :                              const uint8_t *src0, int src0_stride,
     250             :                              const uint8_t *src1, int src1_stride,
     251             :                              BLOCK_SIZE sb_type, int h, int w);
     252             : #if CONFIG_HIGHBITDEPTH
     253             : void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
     254             :                                     const uint8_t *src0, int src0_stride,
     255             :                                     const uint8_t *src1, int src1_stride,
     256             :                                     BLOCK_SIZE sb_type, int h, int w, int bd);
     257             : #endif  // CONFIG_HIGHBITDEPTH
     258             : #endif  // CONFIG_COMPOUND_SEGMENT
     259             : #endif  // CONFIG_EXT_INTER
     260             : 
     261             : void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
     262             : #if CONFIG_MOTION_VAR
     263             :                             int mi_col_offset, int mi_row_offset,
     264             : #endif  // CONFIG_MOTION_VAR
     265             :                             int block, int bw, int bh, int x, int y, int w,
     266             :                             int h,
     267             : #if CONFIG_SUPERTX && CONFIG_EXT_INTER
     268             :                             int wedge_offset_x, int wedge_offset_y,
     269             : #endif  // CONFIG_SUPERTX && CONFIG_EXT_INTER
     270             :                             int mi_x, int mi_y);
     271             : 
     272             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     273             : // This function will determine whether or not to create a warped
     274             : // prediction and return the appropriate motion model depending
     275             : // on the configuration. Behavior will change with different
     276             : // combinations of GLOBAL_MOTION, WARPED_MOTION and MOTION_VAR.
     277           0 : static INLINE int allow_warp(const MODE_INFO *const mi,
     278             :                              const WarpTypesAllowed *const warp_types,
     279             : #if CONFIG_GLOBAL_MOTION
     280             :                              const WarpedMotionParams *const gm_params,
     281             : #endif  // CONFIG_GLOBAL_MOTION
     282             : #if CONFIG_MOTION_VAR
     283             :                              int mi_col_offset, int mi_row_offset,
     284             : #endif  // CONFIG_MOTION_VAR
     285             :                              WarpedMotionParams *final_warp_params) {
     286           0 :   const MB_MODE_INFO *const mbmi = &mi->mbmi;
     287           0 :   set_default_warp_params(final_warp_params);
     288             : 
     289             : // Only global motion configured
     290             : #if CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
     291             :   (void)mbmi;
     292             :   if (warp_types->global_warp_allowed) {
     293             :     memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
     294             :     return 1;
     295             :   }
     296             : #endif  // CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
     297             : 
     298             : // Only warped motion configured
     299             : #if CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
     300             :   if (warp_types->local_warp_allowed) {
     301             :     memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
     302             :     return 1;
     303             :   }
     304             : #endif  // CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
     305             : 
     306             : // Warped and global motion configured
     307             : #if CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
     308             :   // When both are enabled, warped will take priority. The global parameters
     309             :   // will only be used to compute projection samples to find the warped model.
     310             :   // Note that, if SEPARATE_GLOBAL_MOTION is enabled and a block chooses
     311             :   // global, it will not be possible to select WARPED_CAUSAL.
     312             :   if (warp_types->local_warp_allowed) {
     313             :     memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
     314             :     return 1;
     315             :   } else if (warp_types->global_warp_allowed) {
     316             :     memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
     317             :     return 1;
     318             :   }
     319             : #endif  // CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
     320             : 
     321             : // Motion var and global motion configured
     322             : #if CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
     323             :   // We warp if either case is true:
     324             :   //   1.) We are predicting a block which uses global motion
     325             :   //   2.) We are predicting a neighboring block of a block using OBMC,
     326             :   //       the neighboring block uses global motion, and we have enabled
     327             :   //       WARP_GM_NEIGHBORS_WITH_OBMC
     328             :   const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
     329             :   (void)mbmi;
     330             :   if (warp_types->global_warp_allowed &&
     331             :       (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
     332             :     memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
     333             :     return 1;
     334             :   }
     335             : #endif  // CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
     336             : 
     337             : // Motion var and warped motion configured
     338             : #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
     339             :   // We warp if either case is true:
     340             :   //   1.) We are predicting a block with motion mode WARPED_CAUSAL
     341             :   //   2.) We are predicting a neighboring block of a block using OBMC,
     342             :   //       the neighboring block has mode WARPED_CAUSAL, and we have enabled
     343             :   //       WARP_WM_NEIGHBORS_WITH_OBMC
     344             :   const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
     345             :   if (warp_types->local_warp_allowed) {
     346             :     if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
     347             :       memcpy(final_warp_params, &mbmi->wm_params[0],
     348             :              sizeof(*final_warp_params));
     349             :       return 1;
     350             :     }
     351             :   }
     352             : #endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
     353             : 
     354             : // Motion var, warped motion and global motion all configured
     355             : #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
     356           0 :   const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
     357           0 :   if (warp_types->local_warp_allowed) {
     358           0 :     if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
     359           0 :       memcpy(final_warp_params, &mbmi->wm_params[0],
     360             :              sizeof(*final_warp_params));
     361           0 :       return 1;
     362             :     }
     363           0 :   } else if (warp_types->global_warp_allowed &&
     364             :              (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
     365           0 :     memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
     366           0 :     return 1;
     367             :   }
     368             : #endif  // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
     369             : 
     370           0 :   return 0;
     371             : }
     372             : #endif  // CONFIG_GLOBAL_MOTION ||CONFIG_WARPED_MOTION
     373             : 
     374           0 : static INLINE void av1_make_inter_predictor(
     375             :     const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
     376             :     const int subpel_x, const int subpel_y, const struct scale_factors *sf,
     377             :     int w, int h, ConvolveParams *conv_params,
     378             : #if CONFIG_DUAL_FILTER
     379             :     const InterpFilter *interp_filter,
     380             : #else
     381             :     const InterpFilter interp_filter,
     382             : #endif
     383             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     384             :     const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane,
     385             :     int ref,
     386             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     387             : #if CONFIG_MOTION_VAR
     388             :     int mi_col_offset, int mi_row_offset,
     389             : #endif
     390             :     int xs, int ys, const MACROBLOCKD *xd) {
     391             :   (void)xd;
     392             : 
     393             : #if CONFIG_MOTION_VAR
     394           0 :   const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset];
     395             : #else
     396             :   const MODE_INFO *mi = xd->mi[0];
     397             :   (void)mi;
     398             : #endif  // CONFIG_MOTION_VAR
     399             : 
     400             : // Make sure the selected motion mode is valid for this configuration
     401             : #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
     402           0 :   assert_motion_mode_valid(mi->mbmi.motion_mode,
     403             : #if CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
     404           0 :                            0, xd->global_motion,
     405             : #endif  // CONFIG_GLOBAL_MOTION && SEPARATE_GLOBAL_MOTION
     406             :                            mi);
     407             : #endif  // CONFIG MOTION_VAR || CONFIG_WARPED_MOTION
     408             : 
     409             : #if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
     410             :   WarpedMotionParams final_warp_params;
     411           0 :   const int do_warp = allow_warp(mi, warp_types,
     412             : #if CONFIG_GLOBAL_MOTION
     413           0 :                                  &xd->global_motion[mi->mbmi.ref_frame[ref]],
     414             : #endif  // CONFIG_GLOBAL_MOTION
     415             : #if CONFIG_MOTION_VAR
     416             :                                  mi_col_offset, mi_row_offset,
     417             : #endif  // CONFIG_MOTION_VAR
     418             :                                  &final_warp_params);
     419           0 :   if (do_warp) {
     420           0 :     const struct macroblockd_plane *const pd = &xd->plane[plane];
     421           0 :     const struct buf_2d *const pre_buf = &pd->pre[ref];
     422             : #if CONFIG_EXT_INTER
     423           0 :     int compute_avg =
     424           0 :         ref && mi->mbmi.interinter_compound_type == COMPOUND_AVERAGE;
     425             : #else
     426             :     int compute_avg = ref;
     427             : #endif  // CONFIG_EXT_INTER
     428           0 :     av1_warp_plane(&final_warp_params,
     429             : #if CONFIG_HIGHBITDEPTH
     430           0 :                    xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
     431             : #endif  // CONFIG_HIGHBITDEPTH
     432           0 :                    pre_buf->buf0, pre_buf->width, pre_buf->height,
     433             :                    pre_buf->stride, dst, p_col, p_row, w, h, dst_stride,
     434             :                    pd->subsampling_x, pd->subsampling_y, xs, ys, compute_avg);
     435           0 :     return;
     436             :   }
     437             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     438             : #if CONFIG_HIGHBITDEPTH
     439           0 :   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
     440           0 :     highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
     441             :                            sf, w, h, conv_params, interp_filter, xs, ys,
     442             :                            xd->bd);
     443           0 :     return;
     444             :   }
     445             : #endif  // CONFIG_HIGHBITDEPTH
     446           0 :   inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
     447             :                   h, conv_params, interp_filter, xs, ys);
     448             : }
     449             : 
     450             : #if CONFIG_EXT_INTER
     451             : void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
     452             :                                      uint8_t *dst, int dst_stride,
     453             :                                      const int subpel_x, const int subpel_y,
     454             :                                      const struct scale_factors *sf, int w,
     455             :                                      int h,
     456             : #if CONFIG_DUAL_FILTER
     457             :                                      const InterpFilter *interp_filter,
     458             : #else
     459             :                                      const InterpFilter interp_filter,
     460             : #endif
     461             :                                      int xs, int ys,
     462             : #if CONFIG_SUPERTX
     463             :                                      int wedge_offset_x, int wedge_offset_y,
     464             : #endif  // CONFIG_SUPERTX
     465             :                                      int plane,
     466             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     467             :                                      const WarpTypesAllowed *warp_types,
     468             :                                      int p_col, int p_row, int ref,
     469             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     470             :                                      MACROBLOCKD *xd);
     471             : #endif  // CONFIG_EXT_INTER
     472             : 
     473           0 : static INLINE int round_mv_comp_q4(int value) {
     474           0 :   return (value < 0 ? value - 2 : value + 2) / 4;
     475             : }
     476             : 
     477           0 : static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
     478           0 :   MV res = {
     479           0 :     round_mv_comp_q4(
     480           0 :         mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row +
     481           0 :         mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row),
     482           0 :     round_mv_comp_q4(
     483           0 :         mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col +
     484           0 :         mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col)
     485             :   };
     486           0 :   return res;
     487             : }
     488             : 
     489           0 : static INLINE int round_mv_comp_q2(int value) {
     490           0 :   return (value < 0 ? value - 1 : value + 1) / 2;
     491             : }
     492             : 
     493           0 : static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
     494           0 :   MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
     495           0 :                               mi->bmi[block1].as_mv[idx].as_mv.row),
     496           0 :              round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
     497           0 :                               mi->bmi[block1].as_mv[idx].as_mv.col) };
     498           0 :   return res;
     499             : }
     500             : 
     501             : // TODO(jkoleszar): yet another mv clamping function :-(
     502           0 : static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
     503             :                                            const MV *src_mv, int bw, int bh,
     504             :                                            int ss_x, int ss_y) {
     505             :   // If the MV points so far into the UMV border that no visible pixels
     506             :   // are used for reconstruction, the subpel part of the MV can be
     507             :   // discarded and the MV limited to 16 pixels with equivalent results.
     508           0 :   const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
     509           0 :   const int spel_right = spel_left - SUBPEL_SHIFTS;
     510           0 :   const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
     511           0 :   const int spel_bottom = spel_top - SUBPEL_SHIFTS;
     512           0 :   MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)),
     513           0 :                     src_mv->col * (1 << (1 - ss_x)) };
     514           0 :   assert(ss_x <= 1);
     515           0 :   assert(ss_y <= 1);
     516             : 
     517           0 :   clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
     518           0 :            xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
     519           0 :            xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
     520           0 :            xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
     521             : 
     522           0 :   return clamped_mv;
     523             : }
     524             : 
     525           0 : static INLINE MV average_split_mvs(const struct macroblockd_plane *pd,
     526             :                                    const MODE_INFO *mi, int ref, int block) {
     527           0 :   const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
     528           0 :   MV res = { 0, 0 };
     529           0 :   switch (ss_idx) {
     530           0 :     case 0: res = mi->bmi[block].as_mv[ref].as_mv; break;
     531           0 :     case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break;
     532           0 :     case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break;
     533           0 :     case 3: res = mi_mv_pred_q4(mi, ref); break;
     534           0 :     default: assert(ss_idx <= 3 && ss_idx >= 0);
     535             :   }
     536           0 :   return res;
     537             : }
     538             : 
     539             : void av1_build_inter_predictor_sub8x8(const AV1_COMMON *cm, MACROBLOCKD *xd,
     540             :                                       int plane, int i, int ir, int ic,
     541             :                                       int mi_row, int mi_col);
     542             : 
     543             : void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
     544             :                                     int mi_row, int mi_col, BUFFER_SET *ctx,
     545             :                                     BLOCK_SIZE bsize);
     546             : 
     547             : void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
     548             :                                      int mi_row, int mi_col, BUFFER_SET *ctx,
     549             :                                      BLOCK_SIZE bsize);
     550             : 
     551             : void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
     552             :                                    int mi_row, int mi_col, BUFFER_SET *ctx,
     553             :                                    BLOCK_SIZE bsize);
     554             : 
     555             : #if CONFIG_SUPERTX
     556             : void av1_build_inter_predictors_sb_sub8x8_extend(const AV1_COMMON *cm,
     557             :                                                  MACROBLOCKD *xd,
     558             : #if CONFIG_EXT_INTER
     559             :                                                  int mi_row_ori, int mi_col_ori,
     560             : #endif  // CONFIG_EXT_INTER
     561             :                                                  int mi_row, int mi_col,
     562             :                                                  BLOCK_SIZE bsize, int block);
     563             : 
     564             : void av1_build_inter_predictors_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd,
     565             : #if CONFIG_EXT_INTER
     566             :                                           int mi_row_ori, int mi_col_ori,
     567             : #endif  // CONFIG_EXT_INTER
     568             :                                           int mi_row, int mi_col,
     569             :                                           BLOCK_SIZE bsize);
     570             : struct macroblockd_plane;
     571             : void av1_build_masked_inter_predictor_complex(
     572             :     MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
     573             :     int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
     574             :     BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
     575             :     int plane);
     576             : #endif  // CONFIG_SUPERTX
     577             : 
     578             : void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
     579             :                                int dst_stride, const MV *src_mv,
     580             :                                const struct scale_factors *sf, int w, int h,
     581             :                                ConvolveParams *conv_params,
     582             : #if CONFIG_DUAL_FILTER
     583             :                                const InterpFilter *interp_filter,
     584             : #else
     585             :                                const InterpFilter interp_filter,
     586             : #endif
     587             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     588             :                                const WarpTypesAllowed *warp_types, int p_col,
     589             :                                int p_row, int plane, int ref,
     590             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     591             :                                enum mv_precision precision, int x, int y,
     592             :                                const MACROBLOCKD *xd);
     593             : 
     594             : #if CONFIG_HIGHBITDEPTH
     595             : void av1_highbd_build_inter_predictor(
     596             :     const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
     597             :     const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg,
     598             : #if CONFIG_DUAL_FILTER
     599             :     const InterpFilter *interp_filter,
     600             : #else
     601             :     const InterpFilter interp_filter,
     602             : #endif
     603             : #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     604             :     const WarpTypesAllowed *warp_types, int p_col, int p_row,
     605             : #endif  // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
     606             :     int plane, enum mv_precision precision, int x, int y,
     607             :     const MACROBLOCKD *xd);
     608             : #endif
     609             : 
     610           0 : static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride,
     611             :                                        const struct scale_factors *sf) {
     612           0 :   const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset;
     613           0 :   const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset;
     614           0 :   return y * stride + x;
     615             : }
     616             : 
     617           0 : static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize,
     618             :                                     uint8_t *src, int width, int height,
     619             :                                     int stride, int mi_row, int mi_col,
     620             :                                     const struct scale_factors *scale,
     621             :                                     int subsampling_x, int subsampling_y) {
     622             : #if CONFIG_CHROMA_SUB8X8
     623           0 :   if (bsize < BLOCK_8X8) {
     624             :     // Offset the buffer pointer
     625           0 :     if (subsampling_y && (mi_row & 0x01)) mi_row -= 1;
     626           0 :     if (subsampling_x && (mi_col & 0x01)) mi_col -= 1;
     627             :   }
     628             : #else
     629             :   (void)bsize;
     630             : #endif
     631             : 
     632           0 :   const int x = (MI_SIZE * mi_col) >> subsampling_x;
     633           0 :   const int y = (MI_SIZE * mi_row) >> subsampling_y;
     634           0 :   dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
     635           0 :   dst->buf0 = src;
     636           0 :   dst->width = width;
     637           0 :   dst->height = height;
     638           0 :   dst->stride = stride;
     639           0 : }
     640             : 
     641             : void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
     642             :                           BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src,
     643             :                           int mi_row, int mi_col);
     644             : 
     645             : void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
     646             :                           const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
     647             :                           const struct scale_factors *sf);
     648             : 
     649             : // Detect if the block have sub-pixel level motion vectors
     650             : // per component.
     651             : #define CHECK_SUBPEL 0
     652           0 : static INLINE int has_subpel_mv_component(const MODE_INFO *const mi,
     653             :                                           const MACROBLOCKD *const xd,
     654             :                                           int dir) {
     655             : #if CHECK_SUBPEL
     656             :   const MB_MODE_INFO *const mbmi = &mi->mbmi;
     657             :   const BLOCK_SIZE bsize = mbmi->sb_type;
     658             :   int plane;
     659             :   int ref = (dir >> 1);
     660             : #if CONFIG_CB4X4
     661             :   const int unify_bsize = 1;
     662             : #else
     663             :   const int unify_bsize = 0;
     664             : #endif
     665             : 
     666             :   if (bsize >= BLOCK_8X8 || unify_bsize) {
     667             :     if (dir & 0x01) {
     668             :       if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1;
     669             :     } else {
     670             :       if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1;
     671             :     }
     672             :   } else {
     673             :     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
     674             :       const PARTITION_TYPE bp = BLOCK_8X8 - bsize;
     675             :       const struct macroblockd_plane *const pd = &xd->plane[plane];
     676             :       const int have_vsplit = bp != PARTITION_HORZ;
     677             :       const int have_hsplit = bp != PARTITION_VERT;
     678             :       const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
     679             :       const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
     680             : 
     681             :       int x, y;
     682             :       for (y = 0; y < num_4x4_h; ++y) {
     683             :         for (x = 0; x < num_4x4_w; ++x) {
     684             :           const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x);
     685             :           if (dir & 0x01) {
     686             :             if (mv.col & SUBPEL_MASK) return 1;
     687             :           } else {
     688             :             if (mv.row & SUBPEL_MASK) return 1;
     689             :           }
     690             :         }
     691             :       }
     692             :     }
     693             :   }
     694             : 
     695             :   return 0;
     696             : #else
     697             :   (void)mi;
     698             :   (void)xd;
     699             :   (void)dir;
     700           0 :   return 1;
     701             : #endif
     702             : }
     703             : 
     704           0 : static INLINE void set_default_interp_filters(
     705             :     MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) {
     706             : #if CONFIG_DUAL_FILTER
     707             :   int dir;
     708           0 :   for (dir = 0; dir < 4; ++dir)
     709           0 :     mbmi->interp_filter[dir] = frame_interp_filter == SWITCHABLE
     710             :                                    ? EIGHTTAP_REGULAR
     711           0 :                                    : frame_interp_filter;
     712             : #else
     713             :   mbmi->interp_filter = frame_interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR
     714             :                                                           : frame_interp_filter;
     715             : #endif  // CONFIG_DUAL_FILTER
     716           0 : }
     717             : 
     718           0 : static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
     719             :   (void)xd;
     720             : #if CONFIG_WARPED_MOTION
     721           0 :   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
     722           0 :   if (mbmi->motion_mode == WARPED_CAUSAL) return 0;
     723             : #endif  // CONFIG_WARPED_MOTION
     724             : #if CONFIG_GLOBAL_MOTION
     725           0 :   if (is_nontrans_global_motion(xd)) return 0;
     726             : #endif  // CONFIG_GLOBAL_MOTION
     727           0 :   return 1;
     728             : }
     729             : 
     730           0 : static INLINE int av1_is_interp_search_needed(const MACROBLOCKD *const xd) {
     731           0 :   MODE_INFO *const mi = xd->mi[0];
     732           0 :   const int is_compound = has_second_ref(&mi->mbmi);
     733             :   int ref;
     734           0 :   for (ref = 0; ref < 1 + is_compound; ++ref) {
     735             :     int row_col;
     736           0 :     for (row_col = 0; row_col < 2; ++row_col) {
     737           0 :       const int dir = (ref << 1) + row_col;
     738           0 :       if (has_subpel_mv_component(mi, xd, dir)) {
     739           0 :         return 1;
     740             :       }
     741             :     }
     742             :   }
     743           0 :   return 0;
     744             : }
     745             : 
     746             : #if CONFIG_MOTION_VAR
     747             : const uint8_t *av1_get_obmc_mask(int length);
     748             : void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
     749             :                                       int mi_row, int mi_col);
     750             : void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
     751             :                                      int mi_row, int mi_col,
     752             :                                      uint8_t *above[MAX_MB_PLANE],
     753             :                                      int above_stride[MAX_MB_PLANE],
     754             :                                      uint8_t *left[MAX_MB_PLANE],
     755             :                                      int left_stride[MAX_MB_PLANE]);
     756             : void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
     757             :                                          int mi_row, int mi_col,
     758             :                                          uint8_t *tmp_buf[MAX_MB_PLANE],
     759             :                                          int tmp_width[MAX_MB_PLANE],
     760             :                                          int tmp_height[MAX_MB_PLANE],
     761             :                                          int tmp_stride[MAX_MB_PLANE]);
     762             : void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
     763             :                                         int mi_row, int mi_col,
     764             :                                         uint8_t *tmp_buf[MAX_MB_PLANE],
     765             :                                         int tmp_width[MAX_MB_PLANE],
     766             :                                         int tmp_height[MAX_MB_PLANE],
     767             :                                         int tmp_stride[MAX_MB_PLANE]);
     768             : void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
     769             :                                         int mi_row, int mi_col);
     770             : #if CONFIG_NCOBMC
     771             : void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
     772             :                                           int mi_row, int mi_col);
     773             : #endif
     774             : #endif  // CONFIG_MOTION_VAR
     775             : 
     776             : #if CONFIG_EXT_INTER
     777             : #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1)
     778             : #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE)
     779             : 
     780             : void av1_init_wedge_masks();
     781             : 
     782           0 : static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index,
     783             :                                                           int wedge_sign,
     784             :                                                           BLOCK_SIZE sb_type) {
     785           0 :   return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
     786             : }
     787             : 
     788             : const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
     789             :                                  BLOCK_SIZE sb_type, int wedge_offset_x,
     790             :                                  int wedge_offset_y);
     791             : 
     792             : const uint8_t *av1_get_compound_type_mask_inverse(
     793             :     const INTERINTER_COMPOUND_DATA *const comp_data,
     794             : #if CONFIG_COMPOUND_SEGMENT
     795             :     uint8_t *mask_buffer, int h, int w, int stride,
     796             : #endif
     797             :     BLOCK_SIZE sb_type);
     798             : 
     799             : const uint8_t *av1_get_compound_type_mask(
     800             :     const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type);
     801             : #if CONFIG_INTERINTRA
     802             : void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
     803             :                                      uint8_t *upred, uint8_t *vpred,
     804             :                                      int ystride, int ustride, int vstride,
     805             :                                      BUFFER_SET *ctx, BLOCK_SIZE bsize);
     806             : void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
     807             :                                          int ystride, BUFFER_SET *ctx,
     808             :                                          BLOCK_SIZE bsize);
     809             : void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
     810             :                                          int ustride, BUFFER_SET *ctx,
     811             :                                          int plane, BLOCK_SIZE bsize);
     812             : void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
     813             :                                           uint8_t *vpred, int ustride,
     814             :                                           int vstride, BUFFER_SET *ctx,
     815             :                                           BLOCK_SIZE bsize);
     816             : 
     817             : void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
     818             :                                                BLOCK_SIZE bsize, int plane,
     819             :                                                BUFFER_SET *ctx,
     820             :                                                uint8_t *intra_pred,
     821             :                                                int intra_stride);
     822             : void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
     823             :                             const uint8_t *inter_pred, int inter_stride,
     824             :                             const uint8_t *intra_pred, int intra_stride);
     825             : #endif  // CONFIG_INTERINTRA
     826             : // Encoder only
     827             : void av1_build_inter_predictors_for_planes_single_buf(
     828             :     MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
     829             :     int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]);
     830             : void av1_build_wedge_inter_predictor_from_buf(
     831             :     MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to,
     832             : #if CONFIG_SUPERTX
     833             :     int wedge_offset_x, int wedge_offset_y,
     834             : #endif  // CONFIG_SUPERTX
     835             :     uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3],
     836             :     int ext_dst_stride1[3]);
     837             : #endif  // CONFIG_EXT_INTER
     838             : 
     839             : #ifdef __cplusplus
     840             : }  // extern "C"
     841             : #endif
     842             : 
     843             : #endif  // AV1_COMMON_RECONINTER_H_

Generated by: LCOV version 1.13