LCOV - code coverage report
Current view: top level - toolkit/components/protobuf/src/google/protobuf/io - coded_stream.h (source / functions) Hit Total Coverage
Test: output.info Lines: 50 177 28.2 %
Date: 2017-07-14 16:53:18 Functions: 10 34 29.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Protocol Buffers - Google's data interchange format
       2             : // Copyright 2008 Google Inc.  All rights reserved.
       3             : // https://developers.google.com/protocol-buffers/
       4             : //
       5             : // Redistribution and use in source and binary forms, with or without
       6             : // modification, are permitted provided that the following conditions are
       7             : // met:
       8             : //
       9             : //     * Redistributions of source code must retain the above copyright
      10             : // notice, this list of conditions and the following disclaimer.
      11             : //     * Redistributions in binary form must reproduce the above
      12             : // copyright notice, this list of conditions and the following disclaimer
      13             : // in the documentation and/or other materials provided with the
      14             : // distribution.
      15             : //     * Neither the name of Google Inc. nor the names of its
      16             : // contributors may be used to endorse or promote products derived from
      17             : // this software without specific prior written permission.
      18             : //
      19             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      20             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      21             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      22             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      23             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      24             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      25             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      26             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      27             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      28             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      29             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             : // Author: kenton@google.com (Kenton Varda)
      32             : //  Based on original Protocol Buffers design by
      33             : //  Sanjay Ghemawat, Jeff Dean, and others.
      34             : //
      35             : // This file contains the CodedInputStream and CodedOutputStream classes,
      36             : // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
      37             : // and allow you to read or write individual pieces of data in various
      38             : // formats.  In particular, these implement the varint encoding for
      39             : // integers, a simple variable-length encoding in which smaller numbers
      40             : // take fewer bytes.
      41             : //
      42             : // Typically these classes will only be used internally by the protocol
      43             : // buffer library in order to encode and decode protocol buffers.  Clients
      44             : // of the library only need to know about this class if they wish to write
      45             : // custom message parsing or serialization procedures.
      46             : //
      47             : // CodedOutputStream example:
      48             : //   // Write some data to "myfile".  First we write a 4-byte "magic number"
      49             : //   // to identify the file type, then write a length-delimited string.  The
      50             : //   // string is composed of a varint giving the length followed by the raw
      51             : //   // bytes.
      52             : //   int fd = open("myfile", O_WRONLY);
      53             : //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
      54             : //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
      55             : //
      56             : //   int magic_number = 1234;
      57             : //   char text[] = "Hello world!";
      58             : //   coded_output->WriteLittleEndian32(magic_number);
      59             : //   coded_output->WriteVarint32(strlen(text));
      60             : //   coded_output->WriteRaw(text, strlen(text));
      61             : //
      62             : //   delete coded_output;
      63             : //   delete raw_output;
      64             : //   close(fd);
      65             : //
      66             : // CodedInputStream example:
      67             : //   // Read a file created by the above code.
      68             : //   int fd = open("myfile", O_RDONLY);
      69             : //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
      70             : //   CodedInputStream coded_input = new CodedInputStream(raw_input);
      71             : //
      72             : //   coded_input->ReadLittleEndian32(&magic_number);
      73             : //   if (magic_number != 1234) {
      74             : //     cerr << "File not in expected format." << endl;
      75             : //     return;
      76             : //   }
      77             : //
      78             : //   uint32 size;
      79             : //   coded_input->ReadVarint32(&size);
      80             : //
      81             : //   char* text = new char[size + 1];
      82             : //   coded_input->ReadRaw(buffer, size);
      83             : //   text[size] = '\0';
      84             : //
      85             : //   delete coded_input;
      86             : //   delete raw_input;
      87             : //   close(fd);
      88             : //
      89             : //   cout << "Text is: " << text << endl;
      90             : //   delete [] text;
      91             : //
      92             : // For those who are interested, varint encoding is defined as follows:
      93             : //
      94             : // The encoding operates on unsigned integers of up to 64 bits in length.
      95             : // Each byte of the encoded value has the format:
      96             : // * bits 0-6: Seven bits of the number being encoded.
      97             : // * bit 7: Zero if this is the last byte in the encoding (in which
      98             : //   case all remaining bits of the number are zero) or 1 if
      99             : //   more bytes follow.
     100             : // The first byte contains the least-significant 7 bits of the number, the
     101             : // second byte (if present) contains the next-least-significant 7 bits,
     102             : // and so on.  So, the binary number 1011000101011 would be encoded in two
     103             : // bytes as "10101011 00101100".
     104             : //
     105             : // In theory, varint could be used to encode integers of any length.
     106             : // However, for practicality we set a limit at 64 bits.  The maximum encoded
     107             : // length of a number is thus 10 bytes.
     108             : 
     109             : #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
     110             : #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
     111             : 
     112             : #include <string>
     113             : #ifdef _MSC_VER
     114             :   #if defined(_M_IX86) && \
     115             :       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
     116             :     #define PROTOBUF_LITTLE_ENDIAN 1
     117             :   #endif
     118             :   #if _MSC_VER >= 1300
     119             :     // If MSVC has "/RTCc" set, it will complain about truncating casts at
     120             :     // runtime.  This file contains some intentional truncating casts.
     121             :     #pragma runtime_checks("c", off)
     122             :   #endif
     123             : #else
     124             :   #include <sys/param.h>   // __BYTE_ORDER
     125             :   #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
     126             :       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
     127             :     #define PROTOBUF_LITTLE_ENDIAN 1
     128             :   #endif
     129             : #endif
     130             : #include <google/protobuf/stubs/common.h>
     131             : 
     132             : 
     133             : namespace google {
     134             : namespace protobuf {
     135             : 
     136             : class DescriptorPool;
     137             : class MessageFactory;
     138             : 
     139             : namespace io {
     140             : 
     141             : // Defined in this file.
     142             : class CodedInputStream;
     143             : class CodedOutputStream;
     144             : 
     145             : // Defined in other files.
     146             : class ZeroCopyInputStream;           // zero_copy_stream.h
     147             : class ZeroCopyOutputStream;          // zero_copy_stream.h
     148             : 
     149             : // Class which reads and decodes binary data which is composed of varint-
     150             : // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
     151             : // Most users will not need to deal with CodedInputStream.
     152             : //
     153             : // Most methods of CodedInputStream that return a bool return false if an
     154             : // underlying I/O error occurs or if the data is malformed.  Once such a
     155             : // failure occurs, the CodedInputStream is broken and is no longer useful.
     156             : class LIBPROTOBUF_EXPORT CodedInputStream {
     157             :  public:
     158             :   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
     159             :   explicit CodedInputStream(ZeroCopyInputStream* input);
     160             : 
     161             :   // Create a CodedInputStream that reads from the given flat array.  This is
     162             :   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
     163             :   // this constructor.
     164             :   explicit CodedInputStream(const uint8* buffer, int size);
     165             : 
     166             :   // Destroy the CodedInputStream and position the underlying
     167             :   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
     168             :   // reading (causing a method to return false), then the exact position of
     169             :   // the input stream may be anywhere between the last value that was read
     170             :   // successfully and the stream's byte limit.
     171             :   ~CodedInputStream();
     172             : 
     173             :   // Return true if this CodedInputStream reads from a flat array instead of
     174             :   // a ZeroCopyInputStream.
     175             :   inline bool IsFlat() const;
     176             : 
     177             :   // Skips a number of bytes.  Returns false if an underlying read error
     178             :   // occurs.
     179             :   bool Skip(int count);
     180             : 
     181             :   // Sets *data to point directly at the unread part of the CodedInputStream's
     182             :   // underlying buffer, and *size to the size of that buffer, but does not
     183             :   // advance the stream's current position.  This will always either produce
     184             :   // a non-empty buffer or return false.  If the caller consumes any of
     185             :   // this data, it should then call Skip() to skip over the consumed bytes.
     186             :   // This may be useful for implementing external fast parsing routines for
     187             :   // types of data not covered by the CodedInputStream interface.
     188             :   bool GetDirectBufferPointer(const void** data, int* size);
     189             : 
     190             :   // Like GetDirectBufferPointer, but this method is inlined, and does not
     191             :   // attempt to Refresh() if the buffer is currently empty.
     192             :   inline void GetDirectBufferPointerInline(const void** data,
     193             :                                            int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     194             : 
     195             :   // Read raw bytes, copying them into the given buffer.
     196             :   bool ReadRaw(void* buffer, int size);
     197             : 
     198             :   // Like ReadRaw, but reads into a string.
     199             :   //
     200             :   // Implementation Note:  ReadString() grows the string gradually as it
     201             :   // reads in the data, rather than allocating the entire requested size
     202             :   // upfront.  This prevents denial-of-service attacks in which a client
     203             :   // could claim that a string is going to be MAX_INT bytes long in order to
     204             :   // crash the server because it can't allocate this much space at once.
     205             :   bool ReadString(string* buffer, int size);
     206             :   // Like the above, with inlined optimizations. This should only be used
     207             :   // by the protobuf implementation.
     208             :   inline bool InternalReadStringInline(string* buffer,
     209             :                                        int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     210             : 
     211             : 
     212             :   // Read a 32-bit little-endian integer.
     213             :   bool ReadLittleEndian32(uint32* value);
     214             :   // Read a 64-bit little-endian integer.
     215             :   bool ReadLittleEndian64(uint64* value);
     216             : 
     217             :   // These methods read from an externally provided buffer. The caller is
     218             :   // responsible for ensuring that the buffer has sufficient space.
     219             :   // Read a 32-bit little-endian integer.
     220             :   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
     221             :                                                    uint32* value);
     222             :   // Read a 64-bit little-endian integer.
     223             :   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
     224             :                                                    uint64* value);
     225             : 
     226             :   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
     227             :   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
     228             :   // it to uint32, but may be more efficient.
     229             :   bool ReadVarint32(uint32* value);
     230             :   // Read an unsigned integer with Varint encoding.
     231             :   bool ReadVarint64(uint64* value);
     232             : 
     233             :   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
     234             :   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
     235             :   // the last tag value, which can be checked with LastTagWas().
     236             :   // Always inline because this is only called in one place per parse loop
     237             :   // but it is called for every iteration of said loop, so it should be fast.
     238             :   // GCC doesn't want to inline this by default.
     239             :   uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     240             : 
     241             :   // This usually a faster alternative to ReadTag() when cutoff is a manifest
     242             :   // constant.  It does particularly well for cutoff >= 127.  The first part
     243             :   // of the return value is the tag that was read, though it can also be 0 in
     244             :   // the cases where ReadTag() would return 0.  If the second part is true
     245             :   // then the tag is known to be in [0, cutoff].  If not, the tag either is
     246             :   // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
     247             :   // because that can arise in several ways, and for best performance we want
     248             :   // to avoid an extra "is tag == 0?" check here.)
     249             :   inline std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff)
     250             :       GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     251             : 
     252             :   // Usually returns true if calling ReadVarint32() now would produce the given
     253             :   // value.  Will always return false if ReadVarint32() would not return the
     254             :   // given value.  If ExpectTag() returns true, it also advances past
     255             :   // the varint.  For best performance, use a compile-time constant as the
     256             :   // parameter.
     257             :   // Always inline because this collapses to a small number of instructions
     258             :   // when given a constant parameter, but GCC doesn't want to inline by default.
     259             :   bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     260             : 
     261             :   // Like above, except this reads from the specified buffer. The caller is
     262             :   // responsible for ensuring that the buffer is large enough to read a varint
     263             :   // of the expected size. For best performance, use a compile-time constant as
     264             :   // the expected tag parameter.
     265             :   //
     266             :   // Returns a pointer beyond the expected tag if it was found, or NULL if it
     267             :   // was not.
     268             :   static const uint8* ExpectTagFromArray(
     269             :       const uint8* buffer,
     270             :       uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     271             : 
     272             :   // Usually returns true if no more bytes can be read.  Always returns false
     273             :   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
     274             :   // call to LastTagWas() will act as if ReadTag() had been called and returned
     275             :   // zero, and ConsumedEntireMessage() will return true.
     276             :   bool ExpectAtEnd();
     277             : 
     278             :   // If the last call to ReadTag() or ReadTagWithCutoff() returned the
     279             :   // given value, returns true.  Otherwise, returns false;
     280             :   //
     281             :   // This is needed because parsers for some types of embedded messages
     282             :   // (with field type TYPE_GROUP) don't actually know that they've reached the
     283             :   // end of a message until they see an ENDGROUP tag, which was actually part
     284             :   // of the enclosing message.  The enclosing message would like to check that
     285             :   // tag to make sure it had the right number, so it calls LastTagWas() on
     286             :   // return from the embedded parser to check.
     287             :   bool LastTagWas(uint32 expected);
     288             : 
     289             :   // When parsing message (but NOT a group), this method must be called
     290             :   // immediately after MergeFromCodedStream() returns (if it returns true)
     291             :   // to further verify that the message ended in a legitimate way.  For
     292             :   // example, this verifies that parsing did not end on an end-group tag.
     293             :   // It also checks for some cases where, due to optimizations,
     294             :   // MergeFromCodedStream() can incorrectly return true.
     295             :   bool ConsumedEntireMessage();
     296             : 
     297             :   // Limits ----------------------------------------------------------
     298             :   // Limits are used when parsing length-delimited embedded messages.
     299             :   // After the message's length is read, PushLimit() is used to prevent
     300             :   // the CodedInputStream from reading beyond that length.  Once the
     301             :   // embedded message has been parsed, PopLimit() is called to undo the
     302             :   // limit.
     303             : 
     304             :   // Opaque type used with PushLimit() and PopLimit().  Do not modify
     305             :   // values of this type yourself.  The only reason that this isn't a
     306             :   // struct with private internals is for efficiency.
     307             :   typedef int Limit;
     308             : 
     309             :   // Places a limit on the number of bytes that the stream may read,
     310             :   // starting from the current position.  Once the stream hits this limit,
     311             :   // it will act like the end of the input has been reached until PopLimit()
     312             :   // is called.
     313             :   //
     314             :   // As the names imply, the stream conceptually has a stack of limits.  The
     315             :   // shortest limit on the stack is always enforced, even if it is not the
     316             :   // top limit.
     317             :   //
     318             :   // The value returned by PushLimit() is opaque to the caller, and must
     319             :   // be passed unchanged to the corresponding call to PopLimit().
     320             :   Limit PushLimit(int byte_limit);
     321             : 
     322             :   // Pops the last limit pushed by PushLimit().  The input must be the value
     323             :   // returned by that call to PushLimit().
     324             :   void PopLimit(Limit limit);
     325             : 
     326             :   // Returns the number of bytes left until the nearest limit on the
     327             :   // stack is hit, or -1 if no limits are in place.
     328             :   int BytesUntilLimit() const;
     329             : 
     330             :   // Returns current position relative to the beginning of the input stream.
     331             :   int CurrentPosition() const;
     332             : 
     333             :   // Total Bytes Limit -----------------------------------------------
     334             :   // To prevent malicious users from sending excessively large messages
     335             :   // and causing integer overflows or memory exhaustion, CodedInputStream
     336             :   // imposes a hard limit on the total number of bytes it will read.
     337             : 
     338             :   // Sets the maximum number of bytes that this CodedInputStream will read
     339             :   // before refusing to continue.  To prevent integer overflows in the
     340             :   // protocol buffers implementation, as well as to prevent servers from
     341             :   // allocating enormous amounts of memory to hold parsed messages, the
     342             :   // maximum message length should be limited to the shortest length that
     343             :   // will not harm usability.  The theoretical shortest message that could
     344             :   // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
     345             :   // should set shorter limits if possible.  If warning_threshold is not -1,
     346             :   // a warning will be printed to stderr after warning_threshold bytes are
     347             :   // read.  For backwards compatibility all negative values get squashed to -1,
     348             :   // as other negative values might have special internal meanings.
     349             :   // An error will always be printed to stderr if the limit is reached.
     350             :   //
     351             :   // This is unrelated to PushLimit()/PopLimit().
     352             :   //
     353             :   // Hint:  If you are reading this because your program is printing a
     354             :   //   warning about dangerously large protocol messages, you may be
     355             :   //   confused about what to do next.  The best option is to change your
     356             :   //   design such that excessively large messages are not necessary.
     357             :   //   For example, try to design file formats to consist of many small
     358             :   //   messages rather than a single large one.  If this is infeasible,
     359             :   //   you will need to increase the limit.  Chances are, though, that
     360             :   //   your code never constructs a CodedInputStream on which the limit
     361             :   //   can be set.  You probably parse messages by calling things like
     362             :   //   Message::ParseFromString().  In this case, you will need to change
     363             :   //   your code to instead construct some sort of ZeroCopyInputStream
     364             :   //   (e.g. an ArrayInputStream), construct a CodedInputStream around
     365             :   //   that, then call Message::ParseFromCodedStream() instead.  Then
     366             :   //   you can adjust the limit.  Yes, it's more work, but you're doing
     367             :   //   something unusual.
     368             :   void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
     369             : 
     370             :   // The Total Bytes Limit minus the Current Position, or -1 if there
     371             :   // is no Total Bytes Limit.
     372             :   int BytesUntilTotalBytesLimit() const;
     373             : 
     374             :   // Recursion Limit -------------------------------------------------
     375             :   // To prevent corrupt or malicious messages from causing stack overflows,
     376             :   // we must keep track of the depth of recursion when parsing embedded
     377             :   // messages and groups.  CodedInputStream keeps track of this because it
     378             :   // is the only object that is passed down the stack during parsing.
     379             : 
     380             :   // Sets the maximum recursion depth.  The default is 100.
     381             :   void SetRecursionLimit(int limit);
     382             : 
     383             : 
     384             :   // Increments the current recursion depth.  Returns true if the depth is
     385             :   // under the limit, false if it has gone over.
     386             :   bool IncrementRecursionDepth();
     387             : 
     388             :   // Decrements the recursion depth.
     389             :   void DecrementRecursionDepth();
     390             : 
     391             :   // Extension Registry ----------------------------------------------
     392             :   // ADVANCED USAGE:  99.9% of people can ignore this section.
     393             :   //
     394             :   // By default, when parsing extensions, the parser looks for extension
     395             :   // definitions in the pool which owns the outer message's Descriptor.
     396             :   // However, you may call SetExtensionRegistry() to provide an alternative
     397             :   // pool instead.  This makes it possible, for example, to parse a message
     398             :   // using a generated class, but represent some extensions using
     399             :   // DynamicMessage.
     400             : 
     401             :   // Set the pool used to look up extensions.  Most users do not need to call
     402             :   // this as the correct pool will be chosen automatically.
     403             :   //
     404             :   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
     405             :   //   below.  Do not use this unless you are sure you need it.  Almost no one
     406             :   //   does.
     407             :   //
     408             :   // Let's say you are parsing a message into message object m, and you want
     409             :   // to take advantage of SetExtensionRegistry().  You must follow these
     410             :   // requirements:
     411             :   //
     412             :   // The given DescriptorPool must contain m->GetDescriptor().  It is not
     413             :   // sufficient for it to simply contain a descriptor that has the same name
     414             :   // and content -- it must be the *exact object*.  In other words:
     415             :   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
     416             :   //          m->GetDescriptor());
     417             :   // There are two ways to satisfy this requirement:
     418             :   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
     419             :   //    because this is the pool that would be used anyway if you didn't call
     420             :   //    SetExtensionRegistry() at all.
     421             :   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
     422             :   //    "underlay".  Read the documentation for DescriptorPool for more
     423             :   //    information about underlays.
     424             :   //
     425             :   // You must also provide a MessageFactory.  This factory will be used to
     426             :   // construct Message objects representing extensions.  The factory's
     427             :   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
     428             :   // through the provided pool.
     429             :   //
     430             :   // If the provided factory might return instances of protocol-compiler-
     431             :   // generated (i.e. compiled-in) types, or if the outer message object m is
     432             :   // a generated type, then the given factory MUST have this property:  If
     433             :   // GetPrototype() is given a Descriptor which resides in
     434             :   // DescriptorPool::generated_pool(), the factory MUST return the same
     435             :   // prototype which MessageFactory::generated_factory() would return.  That
     436             :   // is, given a descriptor for a generated type, the factory must return an
     437             :   // instance of the generated class (NOT DynamicMessage).  However, when
     438             :   // given a descriptor for a type that is NOT in generated_pool, the factory
     439             :   // is free to return any implementation.
     440             :   //
     441             :   // The reason for this requirement is that generated sub-objects may be
     442             :   // accessed via the standard (non-reflection) extension accessor methods,
     443             :   // and these methods will down-cast the object to the generated class type.
     444             :   // If the object is not actually of that type, the results would be undefined.
     445             :   // On the other hand, if an extension is not compiled in, then there is no
     446             :   // way the code could end up accessing it via the standard accessors -- the
     447             :   // only way to access the extension is via reflection.  When using reflection,
     448             :   // DynamicMessage and generated messages are indistinguishable, so it's fine
     449             :   // if these objects are represented using DynamicMessage.
     450             :   //
     451             :   // Using DynamicMessageFactory on which you have called
     452             :   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
     453             :   // above requirement.
     454             :   //
     455             :   // If either pool or factory is NULL, both must be NULL.
     456             :   //
     457             :   // Note that this feature is ignored when parsing "lite" messages as they do
     458             :   // not have descriptors.
     459             :   void SetExtensionRegistry(const DescriptorPool* pool,
     460             :                             MessageFactory* factory);
     461             : 
     462             :   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
     463             :   // has been provided.
     464             :   const DescriptorPool* GetExtensionPool();
     465             : 
     466             :   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
     467             :   // factory has been provided.
     468             :   MessageFactory* GetExtensionFactory();
     469             : 
     470             :  private:
     471             :   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
     472             : 
     473             :   ZeroCopyInputStream* input_;
     474             :   const uint8* buffer_;
     475             :   const uint8* buffer_end_;     // pointer to the end of the buffer.
     476             :   int total_bytes_read_;  // total bytes read from input_, including
     477             :                           // the current buffer
     478             : 
     479             :   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
     480             :   // so that we can BackUp() on destruction.
     481             :   int overflow_bytes_;
     482             : 
     483             :   // LastTagWas() stuff.
     484             :   uint32 last_tag_;         // result of last ReadTag() or ReadTagWithCutoff().
     485             : 
     486             :   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
     487             :   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
     488             :   // reach the end of a message and attempt to read another tag.
     489             :   bool legitimate_message_end_;
     490             : 
     491             :   // See EnableAliasing().
     492             :   bool aliasing_enabled_;
     493             : 
     494             :   // Limits
     495             :   Limit current_limit_;   // if position = -1, no limit is applied
     496             : 
     497             :   // For simplicity, if the current buffer crosses a limit (either a normal
     498             :   // limit created by PushLimit() or the total bytes limit), buffer_size_
     499             :   // only tracks the number of bytes before that limit.  This field
     500             :   // contains the number of bytes after it.  Note that this implies that if
     501             :   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
     502             :   // hit a limit.  However, if both are zero, it doesn't necessarily mean
     503             :   // we aren't at a limit -- the buffer may have ended exactly at the limit.
     504             :   int buffer_size_after_limit_;
     505             : 
     506             :   // Maximum number of bytes to read, period.  This is unrelated to
     507             :   // current_limit_.  Set using SetTotalBytesLimit().
     508             :   int total_bytes_limit_;
     509             : 
     510             :   // If positive/0: Limit for bytes read after which a warning due to size
     511             :   // should be logged.
     512             :   // If -1: Printing of warning disabled. Can be set by client.
     513             :   // If -2: Internal: Limit has been reached, print full size when destructing.
     514             :   int total_bytes_warning_threshold_;
     515             : 
     516             :   // Current recursion depth, controlled by IncrementRecursionDepth() and
     517             :   // DecrementRecursionDepth().
     518             :   int recursion_depth_;
     519             :   // Recursion depth limit, set by SetRecursionLimit().
     520             :   int recursion_limit_;
     521             : 
     522             :   // See SetExtensionRegistry().
     523             :   const DescriptorPool* extension_pool_;
     524             :   MessageFactory* extension_factory_;
     525             : 
     526             :   // Private member functions.
     527             : 
     528             :   // Advance the buffer by a given number of bytes.
     529             :   void Advance(int amount);
     530             : 
     531             :   // Back up input_ to the current buffer position.
     532             :   void BackUpInputToCurrentPosition();
     533             : 
     534             :   // Recomputes the value of buffer_size_after_limit_.  Must be called after
     535             :   // current_limit_ or total_bytes_limit_ changes.
     536             :   void RecomputeBufferLimits();
     537             : 
     538             :   // Writes an error message saying that we hit total_bytes_limit_.
     539             :   void PrintTotalBytesLimitError();
     540             : 
     541             :   // Called when the buffer runs out to request more data.  Implies an
     542             :   // Advance(BufferSize()).
     543             :   bool Refresh();
     544             : 
     545             :   // When parsing varints, we optimize for the common case of small values, and
     546             :   // then optimize for the case when the varint fits within the current buffer
     547             :   // piece. The Fallback method is used when we can't use the one-byte
     548             :   // optimization. The Slow method is yet another fallback when the buffer is
     549             :   // not large enough. Making the slow path out-of-line speeds up the common
     550             :   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
     551             :   // message crosses multiple buffers.
     552             :   bool ReadVarint32Fallback(uint32* value);
     553             :   bool ReadVarint64Fallback(uint64* value);
     554             :   bool ReadVarint32Slow(uint32* value);
     555             :   bool ReadVarint64Slow(uint64* value);
     556             :   bool ReadLittleEndian32Fallback(uint32* value);
     557             :   bool ReadLittleEndian64Fallback(uint64* value);
     558             :   // Fallback/slow methods for reading tags. These do not update last_tag_,
     559             :   // but will set legitimate_message_end_ if we are at the end of the input
     560             :   // stream.
     561             :   uint32 ReadTagFallback();
     562             :   uint32 ReadTagSlow();
     563             :   bool ReadStringFallback(string* buffer, int size);
     564             : 
     565             :   // Return the size of the buffer.
     566             :   int BufferSize() const;
     567             : 
     568             :   static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
     569             : 
     570             :   static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
     571             : 
     572             :   static int default_recursion_limit_;  // 100 by default.
     573             : };
     574             : 
     575             : // Class which encodes and writes binary data which is composed of varint-
     576             : // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
     577             : // Most users will not need to deal with CodedOutputStream.
     578             : //
     579             : // Most methods of CodedOutputStream which return a bool return false if an
     580             : // underlying I/O error occurs.  Once such a failure occurs, the
     581             : // CodedOutputStream is broken and is no longer useful. The Write* methods do
     582             : // not return the stream status, but will invalidate the stream if an error
     583             : // occurs. The client can probe HadError() to determine the status.
     584             : //
     585             : // Note that every method of CodedOutputStream which writes some data has
     586             : // a corresponding static "ToArray" version. These versions write directly
     587             : // to the provided buffer, returning a pointer past the last written byte.
     588             : // They require that the buffer has sufficient capacity for the encoded data.
     589             : // This allows an optimization where we check if an output stream has enough
     590             : // space for an entire message before we start writing and, if there is, we
     591             : // call only the ToArray methods to avoid doing bound checks for each
     592             : // individual value.
     593             : // i.e., in the example above:
     594             : //
     595             : //   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
     596             : //   int magic_number = 1234;
     597             : //   char text[] = "Hello world!";
     598             : //
     599             : //   int coded_size = sizeof(magic_number) +
     600             : //                    CodedOutputStream::VarintSize32(strlen(text)) +
     601             : //                    strlen(text);
     602             : //
     603             : //   uint8* buffer =
     604             : //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
     605             : //   if (buffer != NULL) {
     606             : //     // The output stream has enough space in the buffer: write directly to
     607             : //     // the array.
     608             : //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
     609             : //                                                            buffer);
     610             : //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
     611             : //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
     612             : //   } else {
     613             : //     // Make bound-checked writes, which will ask the underlying stream for
     614             : //     // more space as needed.
     615             : //     coded_output->WriteLittleEndian32(magic_number);
     616             : //     coded_output->WriteVarint32(strlen(text));
     617             : //     coded_output->WriteRaw(text, strlen(text));
     618             : //   }
     619             : //
     620             : //   delete coded_output;
     621             : class LIBPROTOBUF_EXPORT CodedOutputStream {
     622             :  public:
     623             :   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
     624             :   explicit CodedOutputStream(ZeroCopyOutputStream* output);
     625             : 
     626             :   // Destroy the CodedOutputStream and position the underlying
     627             :   // ZeroCopyOutputStream immediately after the last byte written.
     628             :   ~CodedOutputStream();
     629             : 
     630             :   // Skips a number of bytes, leaving the bytes unmodified in the underlying
     631             :   // buffer.  Returns false if an underlying write error occurs.  This is
     632             :   // mainly useful with GetDirectBufferPointer().
     633             :   bool Skip(int count);
     634             : 
     635             :   // Sets *data to point directly at the unwritten part of the
     636             :   // CodedOutputStream's underlying buffer, and *size to the size of that
     637             :   // buffer, but does not advance the stream's current position.  This will
     638             :   // always either produce a non-empty buffer or return false.  If the caller
     639             :   // writes any data to this buffer, it should then call Skip() to skip over
     640             :   // the consumed bytes.  This may be useful for implementing external fast
     641             :   // serialization routines for types of data not covered by the
     642             :   // CodedOutputStream interface.
     643             :   bool GetDirectBufferPointer(void** data, int* size);
     644             : 
     645             :   // If there are at least "size" bytes available in the current buffer,
     646             :   // returns a pointer directly into the buffer and advances over these bytes.
     647             :   // The caller may then write directly into this buffer (e.g. using the
     648             :   // *ToArray static methods) rather than go through CodedOutputStream.  If
     649             :   // there are not enough bytes available, returns NULL.  The return pointer is
     650             :   // invalidated as soon as any other non-const method of CodedOutputStream
     651             :   // is called.
     652             :   inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
     653             : 
     654             :   // Write raw bytes, copying them from the given buffer.
     655             :   void WriteRaw(const void* buffer, int size);
     656             :   // Like WriteRaw()  but will try to write aliased data if aliasing is
     657             :   // turned on.
     658             :   void WriteRawMaybeAliased(const void* data, int size);
     659             :   // Like WriteRaw()  but writing directly to the target array.
     660             :   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
     661             :   // copy loops. Since this gets called by every field with string or bytes
     662             :   // type, inlining may lead to a significant amount of code bloat, with only a
     663             :   // minor performance gain.
     664             :   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
     665             : 
     666             :   // Equivalent to WriteRaw(str.data(), str.size()).
     667             :   void WriteString(const string& str);
     668             :   // Like WriteString()  but writing directly to the target array.
     669             :   static uint8* WriteStringToArray(const string& str, uint8* target);
     670             :   // Write the varint-encoded size of str followed by str.
     671             :   static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
     672             : 
     673             : 
     674             :   // Instructs the CodedOutputStream to allow the underlying
     675             :   // ZeroCopyOutputStream to hold pointers to the original structure instead of
     676             :   // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
     677             :   // underlying stream does not support aliasing, then enabling it has no
     678             :   // affect.  For now, this only affects the behavior of
     679             :   // WriteRawMaybeAliased().
     680             :   //
     681             :   // NOTE: It is caller's responsibility to ensure that the chunk of memory
     682             :   // remains live until all of the data has been consumed from the stream.
     683             :   void EnableAliasing(bool enabled);
     684             : 
     685             :   // Write a 32-bit little-endian integer.
     686             :   void WriteLittleEndian32(uint32 value);
     687             :   // Like WriteLittleEndian32()  but writing directly to the target array.
     688             :   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
     689             :   // Write a 64-bit little-endian integer.
     690             :   void WriteLittleEndian64(uint64 value);
     691             :   // Like WriteLittleEndian64()  but writing directly to the target array.
     692             :   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
     693             : 
     694             :   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
     695             :   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
     696             :   // but may be more efficient.
     697             :   void WriteVarint32(uint32 value);
     698             :   // Like WriteVarint32()  but writing directly to the target array.
     699             :   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
     700             :   // Write an unsigned integer with Varint encoding.
     701             :   void WriteVarint64(uint64 value);
     702             :   // Like WriteVarint64()  but writing directly to the target array.
     703             :   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
     704             : 
     705             :   // Equivalent to WriteVarint32() except when the value is negative,
     706             :   // in which case it must be sign-extended to a full 10 bytes.
     707             :   void WriteVarint32SignExtended(int32 value);
     708             :   // Like WriteVarint32SignExtended()  but writing directly to the target array.
     709             :   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
     710             : 
     711             :   // This is identical to WriteVarint32(), but optimized for writing tags.
     712             :   // In particular, if the input is a compile-time constant, this method
     713             :   // compiles down to a couple instructions.
     714             :   // Always inline because otherwise the aformentioned optimization can't work,
     715             :   // but GCC by default doesn't want to inline this.
     716             :   void WriteTag(uint32 value);
     717             :   // Like WriteTag()  but writing directly to the target array.
     718             :   static uint8* WriteTagToArray(
     719             :       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     720             : 
     721             :   // Returns the number of bytes needed to encode the given value as a varint.
     722             :   static int VarintSize32(uint32 value);
     723             :   // Returns the number of bytes needed to encode the given value as a varint.
     724             :   static int VarintSize64(uint64 value);
     725             : 
     726             :   // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
     727             :   static int VarintSize32SignExtended(int32 value);
     728             : 
     729             :   // Compile-time equivalent of VarintSize32().
     730             :   template <uint32 Value>
     731             :   struct StaticVarintSize32 {
     732             :     static const int value =
     733             :         (Value < (1 << 7))
     734             :             ? 1
     735             :             : (Value < (1 << 14))
     736             :                 ? 2
     737             :                 : (Value < (1 << 21))
     738             :                     ? 3
     739             :                     : (Value < (1 << 28))
     740             :                         ? 4
     741             :                         : 5;
     742             :   };
     743             : 
     744             :   // Returns the total number of bytes written since this object was created.
     745             :   inline int ByteCount() const;
     746             : 
     747             :   // Returns true if there was an underlying I/O error since this object was
     748             :   // created.
     749           0 :   bool HadError() const { return had_error_; }
     750             : 
     751             :  private:
     752             :   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
     753             : 
     754             :   ZeroCopyOutputStream* output_;
     755             :   uint8* buffer_;
     756             :   int buffer_size_;
     757             :   int total_bytes_;  // Sum of sizes of all buffers seen so far.
     758             :   bool had_error_;   // Whether an error occurred during output.
     759             :   bool aliasing_enabled_;  // See EnableAliasing().
     760             : 
     761             :   // Advance the buffer by a given number of bytes.
     762             :   void Advance(int amount);
     763             : 
     764             :   // Called when the buffer runs out to request more data.  Implies an
     765             :   // Advance(buffer_size_).
     766             :   bool Refresh();
     767             : 
     768             :   // Like WriteRaw() but may avoid copying if the underlying
     769             :   // ZeroCopyOutputStream supports it.
     770             :   void WriteAliasedRaw(const void* buffer, int size);
     771             : 
     772             :   static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);
     773             : 
     774             :   // Always-inlined versions of WriteVarint* functions so that code can be
     775             :   // reused, while still controlling size. For instance, WriteVarint32ToArray()
     776             :   // should not directly call this: since it is inlined itself, doing so
     777             :   // would greatly increase the size of generated code. Instead, it should call
     778             :   // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
     779             :   // out-of-line, so it should just invoke this directly to avoid any extra
     780             :   // function call overhead.
     781             :   static uint8* WriteVarint32FallbackToArrayInline(
     782             :       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     783             :   static uint8* WriteVarint64ToArrayInline(
     784             :       uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
     785             : 
     786             :   static int VarintSize32Fallback(uint32 value);
     787             : };
     788             : 
     789             : // inline methods ====================================================
     790             : // The vast majority of varints are only one byte.  These inline
     791             : // methods optimize for that case.
     792             : 
     793        2544 : inline bool CodedInputStream::ReadVarint32(uint32* value) {
     794        2544 :   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
     795        2436 :     *value = *buffer_;
     796        2436 :     Advance(1);
     797        2436 :     return true;
     798             :   } else {
     799         108 :     return ReadVarint32Fallback(value);
     800             :   }
     801             : }
     802             : 
     803           6 : inline bool CodedInputStream::ReadVarint64(uint64* value) {
     804           6 :   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
     805           6 :     *value = *buffer_;
     806           6 :     Advance(1);
     807           6 :     return true;
     808             :   } else {
     809           0 :     return ReadVarint64Fallback(value);
     810             :   }
     811             : }
     812             : 
     813             : // static
     814           0 : inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
     815             :     const uint8* buffer,
     816             :     uint32* value) {
     817             : #if defined(PROTOBUF_LITTLE_ENDIAN)
     818           0 :   memcpy(value, buffer, sizeof(*value));
     819           0 :   return buffer + sizeof(*value);
     820             : #else
     821             :   *value = (static_cast<uint32>(buffer[0])      ) |
     822             :            (static_cast<uint32>(buffer[1]) <<  8) |
     823             :            (static_cast<uint32>(buffer[2]) << 16) |
     824             :            (static_cast<uint32>(buffer[3]) << 24);
     825             :   return buffer + sizeof(*value);
     826             : #endif
     827             : }
     828             : // static
     829           0 : inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
     830             :     const uint8* buffer,
     831             :     uint64* value) {
     832             : #if defined(PROTOBUF_LITTLE_ENDIAN)
     833           0 :   memcpy(value, buffer, sizeof(*value));
     834           0 :   return buffer + sizeof(*value);
     835             : #else
     836             :   uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
     837             :                  (static_cast<uint32>(buffer[1]) <<  8) |
     838             :                  (static_cast<uint32>(buffer[2]) << 16) |
     839             :                  (static_cast<uint32>(buffer[3]) << 24);
     840             :   uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
     841             :                  (static_cast<uint32>(buffer[5]) <<  8) |
     842             :                  (static_cast<uint32>(buffer[6]) << 16) |
     843             :                  (static_cast<uint32>(buffer[7]) << 24);
     844             :   *value = static_cast<uint64>(part0) |
     845             :           (static_cast<uint64>(part1) << 32);
     846             :   return buffer + sizeof(*value);
     847             : #endif
     848             : }
     849             : 
     850           0 : inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
     851             : #if defined(PROTOBUF_LITTLE_ENDIAN)
     852           0 :   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
     853           0 :     memcpy(value, buffer_, sizeof(*value));
     854           0 :     Advance(sizeof(*value));
     855           0 :     return true;
     856             :   } else {
     857           0 :     return ReadLittleEndian32Fallback(value);
     858             :   }
     859             : #else
     860             :   return ReadLittleEndian32Fallback(value);
     861             : #endif
     862             : }
     863             : 
     864           0 : inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
     865             : #if defined(PROTOBUF_LITTLE_ENDIAN)
     866           0 :   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
     867           0 :     memcpy(value, buffer_, sizeof(*value));
     868           0 :     Advance(sizeof(*value));
     869           0 :     return true;
     870             :   } else {
     871           0 :     return ReadLittleEndian64Fallback(value);
     872             :   }
     873             : #else
     874             :   return ReadLittleEndian64Fallback(value);
     875             : #endif
     876             : }
     877             : 
     878             : inline uint32 CodedInputStream::ReadTag() {
     879           0 :   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
     880           0 :     last_tag_ = buffer_[0];
     881           0 :     Advance(1);
     882           0 :     return last_tag_;
     883             :   } else {
     884           0 :     last_tag_ = ReadTagFallback();
     885           0 :     return last_tag_;
     886             :   }
     887             : }
     888             : 
     889             : inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
     890             :     uint32 cutoff) {
     891             :   // In performance-sensitive code we can expect cutoff to be a compile-time
     892             :   // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
     893             :   // compile time.
     894        1569 :   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
     895             :     // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
     896             :     // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
     897             :     // is large enough then is it better to check for the two-byte case first?
     898        1083 :     if (static_cast<int8>(buffer_[0]) > 0) {
     899        1083 :       const uint32 kMax1ByteVarint = 0x7f;
     900        1083 :       uint32 tag = last_tag_ = buffer_[0];
     901        1083 :       Advance(1);
     902        1083 :       return make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
     903             :     }
     904             :     // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
     905             :     // and tag is two bytes.  The latter is tested by bitwise-and-not of the
     906             :     // first byte and the second byte.
     907           0 :     if (cutoff >= 0x80 &&
     908           0 :         GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
     909           0 :         GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
     910           0 :       const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
     911           0 :       uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
     912           0 :       Advance(2);
     913             :       // It might make sense to test for tag == 0 now, but it is so rare that
     914             :       // that we don't bother.  A varint-encoded 0 should be one byte unless
     915             :       // the encoder lost its mind.  The second part of the return value of
     916             :       // this function is allowed to be either true or false if the tag is 0,
     917             :       // so we don't have to check for tag == 0.  We may need to check whether
     918             :       // it exceeds cutoff.
     919           0 :       bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
     920           0 :       return make_pair(tag, at_or_below_cutoff);
     921             :     }
     922             :   }
     923             :   // Slow path
     924         486 :   last_tag_ = ReadTagFallback();
     925         486 :   return make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
     926             : }
     927             : 
     928           0 : inline bool CodedInputStream::LastTagWas(uint32 expected) {
     929           0 :   return last_tag_ == expected;
     930             : }
     931             : 
     932         582 : inline bool CodedInputStream::ConsumedEntireMessage() {
     933         582 :   return legitimate_message_end_;
     934             : }
     935             : 
     936             : inline bool CodedInputStream::ExpectTag(uint32 expected) {
     937        2604 :   if (expected < (1 << 7)) {
     938        2604 :     if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
     939        1467 :       Advance(1);
     940        1467 :       return true;
     941             :     } else {
     942        1137 :       return false;
     943             :     }
     944           0 :   } else if (expected < (1 << 14)) {
     945           0 :     if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
     946           0 :         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
     947           0 :         buffer_[1] == static_cast<uint8>(expected >> 7)) {
     948           0 :       Advance(2);
     949           0 :       return true;
     950             :     } else {
     951           0 :       return false;
     952             :     }
     953             :   } else {
     954             :     // Don't bother optimizing for larger values.
     955           0 :     return false;
     956             :   }
     957             : }
     958             : 
     959             : inline const uint8* CodedInputStream::ExpectTagFromArray(
     960             :     const uint8* buffer, uint32 expected) {
     961           0 :   if (expected < (1 << 7)) {
     962           0 :     if (buffer[0] == expected) {
     963           0 :       return buffer + 1;
     964             :     }
     965           0 :   } else if (expected < (1 << 14)) {
     966           0 :     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
     967           0 :         buffer[1] == static_cast<uint8>(expected >> 7)) {
     968           0 :       return buffer + 2;
     969             :     }
     970             :   }
     971           0 :   return NULL;
     972             : }
     973             : 
     974             : inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
     975             :                                                            int* size) {
     976           0 :   *data = buffer_;
     977           0 :   *size = buffer_end_ - buffer_;
     978             : }
     979             : 
     980          96 : inline bool CodedInputStream::ExpectAtEnd() {
     981             :   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
     982             :   // hard to say without calling Refresh(), and we'd rather not do that.
     983             : 
     984         192 :   if (buffer_ == buffer_end_ &&
     985         102 :       ((buffer_size_after_limit_ != 0) ||
     986           6 :        (total_bytes_read_ == current_limit_))) {
     987          96 :     last_tag_ = 0;                   // Pretend we called ReadTag()...
     988          96 :     legitimate_message_end_ = true;  // ... and it hit EOF.
     989          96 :     return true;
     990             :   } else {
     991           0 :     return false;
     992             :   }
     993             : }
     994             : 
     995         576 : inline int CodedInputStream::CurrentPosition() const {
     996         576 :   return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
     997             : }
     998             : 
     999           0 : inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
    1000           0 :   if (buffer_size_ < size) {
    1001           0 :     return NULL;
    1002             :   } else {
    1003           0 :     uint8* result = buffer_;
    1004           0 :     Advance(size);
    1005           0 :     return result;
    1006             :   }
    1007             : }
    1008             : 
    1009           0 : inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
    1010             :                                                         uint8* target) {
    1011           0 :   if (value < 0x80) {
    1012           0 :     *target = value;
    1013           0 :     return target + 1;
    1014             :   } else {
    1015           0 :     return WriteVarint32FallbackToArray(value, target);
    1016             :   }
    1017             : }
    1018             : 
    1019           0 : inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
    1020           0 :   if (value < 0) {
    1021           0 :     WriteVarint64(static_cast<uint64>(value));
    1022             :   } else {
    1023           0 :     WriteVarint32(static_cast<uint32>(value));
    1024             :   }
    1025           0 : }
    1026             : 
    1027           0 : inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
    1028             :     int32 value, uint8* target) {
    1029           0 :   if (value < 0) {
    1030           0 :     return WriteVarint64ToArray(static_cast<uint64>(value), target);
    1031             :   } else {
    1032           0 :     return WriteVarint32ToArray(static_cast<uint32>(value), target);
    1033             :   }
    1034             : }
    1035             : 
    1036           0 : inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
    1037             :                                                             uint8* target) {
    1038             : #if defined(PROTOBUF_LITTLE_ENDIAN)
    1039           0 :   memcpy(target, &value, sizeof(value));
    1040             : #else
    1041             :   target[0] = static_cast<uint8>(value);
    1042             :   target[1] = static_cast<uint8>(value >>  8);
    1043             :   target[2] = static_cast<uint8>(value >> 16);
    1044             :   target[3] = static_cast<uint8>(value >> 24);
    1045             : #endif
    1046           0 :   return target + sizeof(value);
    1047             : }
    1048             : 
    1049           0 : inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
    1050             :                                                             uint8* target) {
    1051             : #if defined(PROTOBUF_LITTLE_ENDIAN)
    1052           0 :   memcpy(target, &value, sizeof(value));
    1053             : #else
    1054             :   uint32 part0 = static_cast<uint32>(value);
    1055             :   uint32 part1 = static_cast<uint32>(value >> 32);
    1056             : 
    1057             :   target[0] = static_cast<uint8>(part0);
    1058             :   target[1] = static_cast<uint8>(part0 >>  8);
    1059             :   target[2] = static_cast<uint8>(part0 >> 16);
    1060             :   target[3] = static_cast<uint8>(part0 >> 24);
    1061             :   target[4] = static_cast<uint8>(part1);
    1062             :   target[5] = static_cast<uint8>(part1 >>  8);
    1063             :   target[6] = static_cast<uint8>(part1 >> 16);
    1064             :   target[7] = static_cast<uint8>(part1 >> 24);
    1065             : #endif
    1066           0 :   return target + sizeof(value);
    1067             : }
    1068             : 
    1069           0 : inline void CodedOutputStream::WriteTag(uint32 value) {
    1070           0 :   WriteVarint32(value);
    1071           0 : }
    1072             : 
    1073             : inline uint8* CodedOutputStream::WriteTagToArray(
    1074             :     uint32 value, uint8* target) {
    1075           0 :   if (value < (1 << 7)) {
    1076           0 :     target[0] = value;
    1077           0 :     return target + 1;
    1078           0 :   } else if (value < (1 << 14)) {
    1079           0 :     target[0] = static_cast<uint8>(value | 0x80);
    1080           0 :     target[1] = static_cast<uint8>(value >> 7);
    1081           0 :     return target + 2;
    1082             :   } else {
    1083           0 :     return WriteVarint32FallbackToArray(value, target);
    1084             :   }
    1085             : }
    1086             : 
    1087           0 : inline int CodedOutputStream::VarintSize32(uint32 value) {
    1088           0 :   if (value < (1 << 7)) {
    1089           0 :     return 1;
    1090             :   } else  {
    1091           0 :     return VarintSize32Fallback(value);
    1092             :   }
    1093             : }
    1094             : 
    1095           0 : inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
    1096           0 :   if (value < 0) {
    1097           0 :     return 10;     // TODO(kenton):  Make this a symbolic constant.
    1098             :   } else {
    1099           0 :     return VarintSize32(static_cast<uint32>(value));
    1100             :   }
    1101             : }
    1102             : 
    1103           0 : inline void CodedOutputStream::WriteString(const string& str) {
    1104           0 :   WriteRaw(str.data(), static_cast<int>(str.size()));
    1105           0 : }
    1106             : 
    1107           0 : inline void CodedOutputStream::WriteRawMaybeAliased(
    1108             :     const void* data, int size) {
    1109           0 :   if (aliasing_enabled_) {
    1110           0 :     WriteAliasedRaw(data, size);
    1111             :   } else {
    1112           0 :     WriteRaw(data, size);
    1113             :   }
    1114           0 : }
    1115             : 
    1116           0 : inline uint8* CodedOutputStream::WriteStringToArray(
    1117             :     const string& str, uint8* target) {
    1118           0 :   return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
    1119             : }
    1120             : 
    1121           0 : inline int CodedOutputStream::ByteCount() const {
    1122           0 :   return total_bytes_ - buffer_size_;
    1123             : }
    1124             : 
    1125        5730 : inline void CodedInputStream::Advance(int amount) {
    1126        5730 :   buffer_ += amount;
    1127        5730 : }
    1128             : 
    1129           0 : inline void CodedOutputStream::Advance(int amount) {
    1130           0 :   buffer_ += amount;
    1131           0 :   buffer_size_ -= amount;
    1132           0 : }
    1133             : 
    1134           0 : inline void CodedInputStream::SetRecursionLimit(int limit) {
    1135           0 :   recursion_limit_ = limit;
    1136           0 : }
    1137             : 
    1138         576 : inline bool CodedInputStream::IncrementRecursionDepth() {
    1139         576 :   ++recursion_depth_;
    1140         576 :   return recursion_depth_ <= recursion_limit_;
    1141             : }
    1142             : 
    1143         576 : inline void CodedInputStream::DecrementRecursionDepth() {
    1144         576 :   if (recursion_depth_ > 0) --recursion_depth_;
    1145         576 : }
    1146             : 
    1147             : inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
    1148             :                                                    MessageFactory* factory) {
    1149             :   extension_pool_ = pool;
    1150             :   extension_factory_ = factory;
    1151             : }
    1152             : 
    1153           0 : inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
    1154           0 :   return extension_pool_;
    1155             : }
    1156             : 
    1157           0 : inline MessageFactory* CodedInputStream::GetExtensionFactory() {
    1158           0 :   return extension_factory_;
    1159             : }
    1160             : 
    1161        1908 : inline int CodedInputStream::BufferSize() const {
    1162        1908 :   return buffer_end_ - buffer_;
    1163             : }
    1164             : 
    1165           0 : inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
    1166             :   : input_(input),
    1167             :     buffer_(NULL),
    1168             :     buffer_end_(NULL),
    1169             :     total_bytes_read_(0),
    1170             :     overflow_bytes_(0),
    1171             :     last_tag_(0),
    1172             :     legitimate_message_end_(false),
    1173             :     aliasing_enabled_(false),
    1174             :     current_limit_(kint32max),
    1175             :     buffer_size_after_limit_(0),
    1176             :     total_bytes_limit_(kDefaultTotalBytesLimit),
    1177             :     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    1178             :     recursion_depth_(0),
    1179             :     recursion_limit_(default_recursion_limit_),
    1180             :     extension_pool_(NULL),
    1181           0 :     extension_factory_(NULL) {
    1182             :   // Eagerly Refresh() so buffer space is immediately available.
    1183           0 :   Refresh();
    1184           0 : }
    1185             : 
    1186           6 : inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
    1187             :   : input_(NULL),
    1188             :     buffer_(buffer),
    1189           6 :     buffer_end_(buffer + size),
    1190             :     total_bytes_read_(size),
    1191             :     overflow_bytes_(0),
    1192             :     last_tag_(0),
    1193             :     legitimate_message_end_(false),
    1194             :     aliasing_enabled_(false),
    1195             :     current_limit_(size),
    1196             :     buffer_size_after_limit_(0),
    1197             :     total_bytes_limit_(kDefaultTotalBytesLimit),
    1198             :     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    1199             :     recursion_depth_(0),
    1200             :     recursion_limit_(default_recursion_limit_),
    1201             :     extension_pool_(NULL),
    1202          12 :     extension_factory_(NULL) {
    1203             :   // Note that setting current_limit_ == size is important to prevent some
    1204             :   // code paths from trying to access input_ and segfaulting.
    1205           6 : }
    1206             : 
    1207             : inline bool CodedInputStream::IsFlat() const {
    1208             :   return input_ == NULL;
    1209             : }
    1210             : 
    1211             : }  // namespace io
    1212             : }  // namespace protobuf
    1213             : 
    1214             : 
    1215             : #if defined(_MSC_VER) && _MSC_VER >= 1300
    1216             :   #pragma runtime_checks("c", restore)
    1217             : #endif  // _MSC_VER
    1218             : 
    1219             : }  // namespace google
    1220             : #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__

Generated by: LCOV version 1.13