LCOV - code coverage report
Current view: top level - toolkit/components/protobuf/src/google/protobuf/stubs - strutil.cc (source / functions) Hit Total Coverage
Test: output.info Lines: 0 565 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 53 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : // Protocol Buffers - Google's data interchange format
       2             : // Copyright 2008 Google Inc.  All rights reserved.
       3             : // https://developers.google.com/protocol-buffers/
       4             : //
       5             : // Redistribution and use in source and binary forms, with or without
       6             : // modification, are permitted provided that the following conditions are
       7             : // met:
       8             : //
       9             : //     * Redistributions of source code must retain the above copyright
      10             : // notice, this list of conditions and the following disclaimer.
      11             : //     * Redistributions in binary form must reproduce the above
      12             : // copyright notice, this list of conditions and the following disclaimer
      13             : // in the documentation and/or other materials provided with the
      14             : // distribution.
      15             : //     * Neither the name of Google Inc. nor the names of its
      16             : // contributors may be used to endorse or promote products derived from
      17             : // this software without specific prior written permission.
      18             : //
      19             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      20             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      21             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      22             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      23             : // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      24             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      25             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      26             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      27             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      28             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      29             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             : // from google3/strings/strutil.cc
      32             : 
      33             : #include <google/protobuf/stubs/strutil.h>
      34             : #include <errno.h>
      35             : #include <float.h>    // FLT_DIG and DBL_DIG
      36             : #include <limits>
      37             : #include <limits.h>
      38             : #include <stdio.h>
      39             : #include <iterator>
      40             : 
      41             : #include "mozilla/FloatingPoint.h"
      42             : 
      43             : #ifdef _WIN32
      44             : // MSVC has only _snprintf, not snprintf.
      45             : //
      46             : // MinGW has both snprintf and _snprintf, but they appear to be different
      47             : // functions.  The former is buggy.  When invoked like so:
      48             : //   char buffer[32];
      49             : //   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
      50             : // it prints "1.23000e+10".  This is plainly wrong:  %g should never print
      51             : // trailing zeros after the decimal point.  For some reason this bug only
      52             : // occurs with some input values, not all.  In any case, _snprintf does the
      53             : // right thing, so we use it.
      54             : #define snprintf _snprintf
      55             : #endif
      56             : 
      57             : namespace google {
      58             : namespace protobuf {
      59             : 
      60           0 : inline bool IsNaN(double value) {
      61           0 :   return ::mozilla::IsNaN(value);
      62             : }
      63             : 
      64             : // These are defined as macros on some platforms.  #undef them so that we can
      65             : // redefine them.
      66             : #undef isxdigit
      67             : #undef isprint
      68             : 
      69             : // The definitions of these in ctype.h change based on locale.  Since our
      70             : // string manipulation is all in relation to the protocol buffer and C++
      71             : // languages, we always want to use the C locale.  So, we re-define these
      72             : // exactly as we want them.
      73           0 : inline bool isxdigit(char c) {
      74           0 :   return ('0' <= c && c <= '9') ||
      75           0 :          ('a' <= c && c <= 'f') ||
      76           0 :          ('A' <= c && c <= 'F');
      77             : }
      78             : 
      79           0 : inline bool isprint(char c) {
      80           0 :   return c >= 0x20 && c <= 0x7E;
      81             : }
      82             : 
      83             : // ----------------------------------------------------------------------
      84             : // StripString
      85             : //    Replaces any occurrence of the character 'remove' (or the characters
      86             : //    in 'remove') with the character 'replacewith'.
      87             : // ----------------------------------------------------------------------
      88           0 : void StripString(string* s, const char* remove, char replacewith) {
      89           0 :   const char * str_start = s->c_str();
      90           0 :   const char * str = str_start;
      91           0 :   for (str = strpbrk(str, remove);
      92           0 :        str != NULL;
      93           0 :        str = strpbrk(str + 1, remove)) {
      94           0 :     (*s)[str - str_start] = replacewith;
      95             :   }
      96           0 : }
      97             : 
      98             : // ----------------------------------------------------------------------
      99             : // StringReplace()
     100             : //    Replace the "old" pattern with the "new" pattern in a string,
     101             : //    and append the result to "res".  If replace_all is false,
     102             : //    it only replaces the first instance of "old."
     103             : // ----------------------------------------------------------------------
     104             : 
     105           0 : void StringReplace(const string& s, const string& oldsub,
     106             :                    const string& newsub, bool replace_all,
     107             :                    string* res) {
     108           0 :   if (oldsub.empty()) {
     109           0 :     res->append(s);  // if empty, append the given string.
     110           0 :     return;
     111             :   }
     112             : 
     113           0 :   string::size_type start_pos = 0;
     114             :   string::size_type pos;
     115           0 :   do {
     116           0 :     pos = s.find(oldsub, start_pos);
     117           0 :     if (pos == string::npos) {
     118           0 :       break;
     119             :     }
     120           0 :     res->append(s, start_pos, pos - start_pos);
     121           0 :     res->append(newsub);
     122           0 :     start_pos = pos + oldsub.size();  // start searching again after the "old"
     123             :   } while (replace_all);
     124           0 :   res->append(s, start_pos, s.length() - start_pos);
     125             : }
     126             : 
     127             : // ----------------------------------------------------------------------
     128             : // StringReplace()
     129             : //    Give me a string and two patterns "old" and "new", and I replace
     130             : //    the first instance of "old" in the string with "new", if it
     131             : //    exists.  If "global" is true; call this repeatedly until it
     132             : //    fails.  RETURN a new string, regardless of whether the replacement
     133             : //    happened or not.
     134             : // ----------------------------------------------------------------------
     135             : 
     136           0 : string StringReplace(const string& s, const string& oldsub,
     137             :                      const string& newsub, bool replace_all) {
     138           0 :   string ret;
     139           0 :   StringReplace(s, oldsub, newsub, replace_all, &ret);
     140           0 :   return ret;
     141             : }
     142             : 
     143             : // ----------------------------------------------------------------------
     144             : // SplitStringUsing()
     145             : //    Split a string using a character delimiter. Append the components
     146             : //    to 'result'.
     147             : //
     148             : // Note: For multi-character delimiters, this routine will split on *ANY* of
     149             : // the characters in the string, not the entire string as a single delimiter.
     150             : // ----------------------------------------------------------------------
     151             : template <typename ITR>
     152             : static inline
     153           0 : void SplitStringToIteratorUsing(const string& full,
     154             :                                 const char* delim,
     155             :                                 ITR& result) {
     156             :   // Optimize the common case where delim is a single character.
     157           0 :   if (delim[0] != '\0' && delim[1] == '\0') {
     158           0 :     char c = delim[0];
     159           0 :     const char* p = full.data();
     160           0 :     const char* end = p + full.size();
     161           0 :     while (p != end) {
     162           0 :       if (*p == c) {
     163           0 :         ++p;
     164             :       } else {
     165           0 :         const char* start = p;
     166           0 :         while (++p != end && *p != c);
     167           0 :         *result++ = string(start, p - start);
     168             :       }
     169             :     }
     170           0 :     return;
     171             :   }
     172             : 
     173             :   string::size_type begin_index, end_index;
     174           0 :   begin_index = full.find_first_not_of(delim);
     175           0 :   while (begin_index != string::npos) {
     176           0 :     end_index = full.find_first_of(delim, begin_index);
     177           0 :     if (end_index == string::npos) {
     178           0 :       *result++ = full.substr(begin_index);
     179           0 :       return;
     180             :     }
     181           0 :     *result++ = full.substr(begin_index, (end_index - begin_index));
     182           0 :     begin_index = full.find_first_not_of(delim, end_index);
     183             :   }
     184             : }
     185             : 
     186           0 : void SplitStringUsing(const string& full,
     187             :                       const char* delim,
     188             :                       vector<string>* result) {
     189           0 :   back_insert_iterator< vector<string> > it(*result);
     190           0 :   SplitStringToIteratorUsing(full, delim, it);
     191           0 : }
     192             : 
     193             : // Split a string using a character delimiter. Append the components
     194             : // to 'result'.  If there are consecutive delimiters, this function
     195             : // will return corresponding empty strings. The string is split into
     196             : // at most the specified number of pieces greedily. This means that the
     197             : // last piece may possibly be split further. To split into as many pieces
     198             : // as possible, specify 0 as the number of pieces.
     199             : //
     200             : // If "full" is the empty string, yields an empty string as the only value.
     201             : //
     202             : // If "pieces" is negative for some reason, it returns the whole string
     203             : // ----------------------------------------------------------------------
     204             : template <typename StringType, typename ITR>
     205             : static inline
     206           0 : void SplitStringToIteratorAllowEmpty(const StringType& full,
     207             :                                      const char* delim,
     208             :                                      int pieces,
     209             :                                      ITR& result) {
     210             :   string::size_type begin_index, end_index;
     211           0 :   begin_index = 0;
     212             : 
     213           0 :   for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
     214           0 :     end_index = full.find_first_of(delim, begin_index);
     215           0 :     if (end_index == string::npos) {
     216           0 :       *result++ = full.substr(begin_index);
     217           0 :       return;
     218             :     }
     219           0 :     *result++ = full.substr(begin_index, (end_index - begin_index));
     220           0 :     begin_index = end_index + 1;
     221             :   }
     222           0 :   *result++ = full.substr(begin_index);
     223             : }
     224             : 
     225           0 : void SplitStringAllowEmpty(const string& full, const char* delim,
     226             :                            vector<string>* result) {
     227           0 :   back_insert_iterator<vector<string> > it(*result);
     228           0 :   SplitStringToIteratorAllowEmpty(full, delim, 0, it);
     229           0 : }
     230             : 
     231             : // ----------------------------------------------------------------------
     232             : // JoinStrings()
     233             : //    This merges a vector of string components with delim inserted
     234             : //    as separaters between components.
     235             : //
     236             : // ----------------------------------------------------------------------
     237             : template <class ITERATOR>
     238           0 : static void JoinStringsIterator(const ITERATOR& start,
     239             :                                 const ITERATOR& end,
     240             :                                 const char* delim,
     241             :                                 string* result) {
     242           0 :   GOOGLE_CHECK(result != NULL);
     243           0 :   result->clear();
     244           0 :   int delim_length = strlen(delim);
     245             : 
     246             :   // Precompute resulting length so we can reserve() memory in one shot.
     247           0 :   int length = 0;
     248           0 :   for (ITERATOR iter = start; iter != end; ++iter) {
     249           0 :     if (iter != start) {
     250           0 :       length += delim_length;
     251             :     }
     252           0 :     length += iter->size();
     253             :   }
     254           0 :   result->reserve(length);
     255             : 
     256             :   // Now combine everything.
     257           0 :   for (ITERATOR iter = start; iter != end; ++iter) {
     258           0 :     if (iter != start) {
     259           0 :       result->append(delim, delim_length);
     260             :     }
     261           0 :     result->append(iter->data(), iter->size());
     262             :   }
     263           0 : }
     264             : 
     265           0 : void JoinStrings(const vector<string>& components,
     266             :                  const char* delim,
     267             :                  string * result) {
     268           0 :   JoinStringsIterator(components.begin(), components.end(), delim, result);
     269           0 : }
     270             : 
     271             : // ----------------------------------------------------------------------
     272             : // UnescapeCEscapeSequences()
     273             : //    This does all the unescaping that C does: \ooo, \r, \n, etc
     274             : //    Returns length of resulting string.
     275             : //    The implementation of \x parses any positive number of hex digits,
     276             : //    but it is an error if the value requires more than 8 bits, and the
     277             : //    result is truncated to 8 bits.
     278             : //
     279             : //    The second call stores its errors in a supplied string vector.
     280             : //    If the string vector pointer is NULL, it reports the errors with LOG().
     281             : // ----------------------------------------------------------------------
     282             : 
     283             : #define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
     284             : 
     285           0 : inline int hex_digit_to_int(char c) {
     286             :   /* Assume ASCII. */
     287             :   assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
     288           0 :   assert(isxdigit(c));
     289           0 :   int x = static_cast<unsigned char>(c);
     290           0 :   if (x > '9') {
     291           0 :     x += 9;
     292             :   }
     293           0 :   return x & 0xf;
     294             : }
     295             : 
     296             : // Protocol buffers doesn't ever care about errors, but I don't want to remove
     297             : // the code.
     298             : #define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
     299             : 
     300           0 : int UnescapeCEscapeSequences(const char* source, char* dest) {
     301           0 :   return UnescapeCEscapeSequences(source, dest, NULL);
     302             : }
     303             : 
     304           0 : int UnescapeCEscapeSequences(const char* source, char* dest,
     305             :                              vector<string> *errors) {
     306           0 :   GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
     307             : 
     308           0 :   char* d = dest;
     309           0 :   const char* p = source;
     310             : 
     311             :   // Small optimization for case where source = dest and there's no escaping
     312           0 :   while ( p == d && *p != '\0' && *p != '\\' )
     313           0 :     p++, d++;
     314             : 
     315           0 :   while (*p != '\0') {
     316           0 :     if (*p != '\\') {
     317           0 :       *d++ = *p++;
     318             :     } else {
     319           0 :       switch ( *++p ) {                    // skip past the '\\'
     320             :         case '\0':
     321           0 :           LOG_STRING(ERROR, errors) << "String cannot end with \\";
     322           0 :           *d = '\0';
     323           0 :           return d - dest;   // we're done with p
     324           0 :         case 'a':  *d++ = '\a';  break;
     325           0 :         case 'b':  *d++ = '\b';  break;
     326           0 :         case 'f':  *d++ = '\f';  break;
     327           0 :         case 'n':  *d++ = '\n';  break;
     328           0 :         case 'r':  *d++ = '\r';  break;
     329           0 :         case 't':  *d++ = '\t';  break;
     330           0 :         case 'v':  *d++ = '\v';  break;
     331           0 :         case '\\': *d++ = '\\';  break;
     332           0 :         case '?':  *d++ = '\?';  break;    // \?  Who knew?
     333           0 :         case '\'': *d++ = '\'';  break;
     334           0 :         case '"':  *d++ = '\"';  break;
     335             :         case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
     336             :         case '4': case '5': case '6': case '7': {
     337           0 :           char ch = *p - '0';
     338           0 :           if ( IS_OCTAL_DIGIT(p[1]) )
     339           0 :             ch = ch * 8 + *++p - '0';
     340           0 :           if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
     341           0 :             ch = ch * 8 + *++p - '0';      // now points at last digit
     342           0 :           *d++ = ch;
     343           0 :           break;
     344             :         }
     345             :         case 'x': case 'X': {
     346           0 :           if (!isxdigit(p[1])) {
     347           0 :             if (p[1] == '\0') {
     348           0 :               LOG_STRING(ERROR, errors) << "String cannot end with \\x";
     349             :             } else {
     350           0 :               LOG_STRING(ERROR, errors) <<
     351           0 :                 "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
     352             :             }
     353           0 :             break;
     354             :           }
     355           0 :           unsigned int ch = 0;
     356           0 :           const char *hex_start = p;
     357           0 :           while (isxdigit(p[1]))  // arbitrarily many hex digits
     358           0 :             ch = (ch << 4) + hex_digit_to_int(*++p);
     359           0 :           if (ch > 0xFF)
     360           0 :             LOG_STRING(ERROR, errors) << "Value of " <<
     361           0 :               "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
     362           0 :           *d++ = ch;
     363           0 :           break;
     364             :         }
     365             : #if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
     366             :         case 'u': {
     367             :           // \uhhhh => convert 4 hex digits to UTF-8
     368             :           char32 rune = 0;
     369             :           const char *hex_start = p;
     370             :           for (int i = 0; i < 4; ++i) {
     371             :             if (isxdigit(p[1])) {  // Look one char ahead.
     372             :               rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
     373             :             } else {
     374             :               LOG_STRING(ERROR, errors)
     375             :                 << "\\u must be followed by 4 hex digits: \\"
     376             :                 <<  string(hex_start, p+1-hex_start);
     377             :               break;
     378             :             }
     379             :           }
     380             :           d += runetochar(d, &rune);
     381             :           break;
     382             :         }
     383             :         case 'U': {
     384             :           // \Uhhhhhhhh => convert 8 hex digits to UTF-8
     385             :           char32 rune = 0;
     386             :           const char *hex_start = p;
     387             :           for (int i = 0; i < 8; ++i) {
     388             :             if (isxdigit(p[1])) {  // Look one char ahead.
     389             :               // Don't change rune until we're sure this
     390             :               // is within the Unicode limit, but do advance p.
     391             :               char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
     392             :               if (newrune > 0x10FFFF) {
     393             :                 LOG_STRING(ERROR, errors)
     394             :                   << "Value of \\"
     395             :                   << string(hex_start, p + 1 - hex_start)
     396             :                   << " exceeds Unicode limit (0x10FFFF)";
     397             :                 break;
     398             :               } else {
     399             :                 rune = newrune;
     400             :               }
     401             :             } else {
     402             :               LOG_STRING(ERROR, errors)
     403             :                 << "\\U must be followed by 8 hex digits: \\"
     404             :                 <<  string(hex_start, p+1-hex_start);
     405             :               break;
     406             :             }
     407             :           }
     408             :           d += runetochar(d, &rune);
     409             :           break;
     410             :         }
     411             : #endif
     412             :         default:
     413           0 :           LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
     414             :       }
     415           0 :       p++;                                 // read past letter we escaped
     416             :     }
     417             :   }
     418           0 :   *d = '\0';
     419           0 :   return d - dest;
     420             : }
     421             : 
     422             : // ----------------------------------------------------------------------
     423             : // UnescapeCEscapeString()
     424             : //    This does the same thing as UnescapeCEscapeSequences, but creates
     425             : //    a new string. The caller does not need to worry about allocating
     426             : //    a dest buffer. This should be used for non performance critical
     427             : //    tasks such as printing debug messages. It is safe for src and dest
     428             : //    to be the same.
     429             : //
     430             : //    The second call stores its errors in a supplied string vector.
     431             : //    If the string vector pointer is NULL, it reports the errors with LOG().
     432             : //
     433             : //    In the first and second calls, the length of dest is returned. In the
     434             : //    the third call, the new string is returned.
     435             : // ----------------------------------------------------------------------
     436           0 : int UnescapeCEscapeString(const string& src, string* dest) {
     437           0 :   return UnescapeCEscapeString(src, dest, NULL);
     438             : }
     439             : 
     440           0 : int UnescapeCEscapeString(const string& src, string* dest,
     441             :                           vector<string> *errors) {
     442           0 :   scoped_array<char> unescaped(new char[src.size() + 1]);
     443           0 :   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
     444           0 :   GOOGLE_CHECK(dest);
     445           0 :   dest->assign(unescaped.get(), len);
     446           0 :   return len;
     447             : }
     448             : 
     449           0 : string UnescapeCEscapeString(const string& src) {
     450           0 :   scoped_array<char> unescaped(new char[src.size() + 1]);
     451           0 :   int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
     452           0 :   return string(unescaped.get(), len);
     453             : }
     454             : 
     455             : // ----------------------------------------------------------------------
     456             : // CEscapeString()
     457             : // CHexEscapeString()
     458             : //    Copies 'src' to 'dest', escaping dangerous characters using
     459             : //    C-style escape sequences. This is very useful for preparing query
     460             : //    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
     461             : //    hexadecimal rather than octal sequences.
     462             : //    Returns the number of bytes written to 'dest' (not including the \0)
     463             : //    or -1 if there was insufficient space.
     464             : //
     465             : //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
     466             : // ----------------------------------------------------------------------
     467           0 : int CEscapeInternal(const char* src, int src_len, char* dest,
     468             :                     int dest_len, bool use_hex, bool utf8_safe) {
     469           0 :   const char* src_end = src + src_len;
     470           0 :   int used = 0;
     471           0 :   bool last_hex_escape = false; // true if last output char was \xNN
     472             : 
     473           0 :   for (; src < src_end; src++) {
     474           0 :     if (dest_len - used < 2)   // Need space for two letter escape
     475           0 :       return -1;
     476             : 
     477           0 :     bool is_hex_escape = false;
     478           0 :     switch (*src) {
     479           0 :       case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
     480           0 :       case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
     481           0 :       case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
     482           0 :       case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
     483           0 :       case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
     484           0 :       case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
     485             :       default:
     486             :         // Note that if we emit \xNN and the src character after that is a hex
     487             :         // digit then that digit must be escaped too to prevent it being
     488             :         // interpreted as part of the character code by C.
     489           0 :         if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
     490           0 :             (!isprint(*src) ||
     491           0 :              (last_hex_escape && isxdigit(*src)))) {
     492           0 :           if (dest_len - used < 4) // need space for 4 letter escape
     493           0 :             return -1;
     494           0 :           sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
     495           0 :                   static_cast<uint8>(*src));
     496           0 :           is_hex_escape = use_hex;
     497           0 :           used += 4;
     498             :         } else {
     499           0 :           dest[used++] = *src; break;
     500             :         }
     501             :     }
     502           0 :     last_hex_escape = is_hex_escape;
     503             :   }
     504             : 
     505           0 :   if (dest_len - used < 1)   // make sure that there is room for \0
     506           0 :     return -1;
     507             : 
     508           0 :   dest[used] = '\0';   // doesn't count towards return value though
     509           0 :   return used;
     510             : }
     511             : 
     512           0 : int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
     513           0 :   return CEscapeInternal(src, src_len, dest, dest_len, false, false);
     514             : }
     515             : 
     516             : // ----------------------------------------------------------------------
     517             : // CEscape()
     518             : // CHexEscape()
     519             : //    Copies 'src' to result, escaping dangerous characters using
     520             : //    C-style escape sequences. This is very useful for preparing query
     521             : //    flags. 'src' and 'dest' should not overlap. The 'Hex' version
     522             : //    hexadecimal rather than octal sequences.
     523             : //
     524             : //    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
     525             : // ----------------------------------------------------------------------
     526           0 : string CEscape(const string& src) {
     527           0 :   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
     528           0 :   scoped_array<char> dest(new char[dest_length]);
     529           0 :   const int len = CEscapeInternal(src.data(), src.size(),
     530           0 :                                   dest.get(), dest_length, false, false);
     531           0 :   GOOGLE_DCHECK_GE(len, 0);
     532           0 :   return string(dest.get(), len);
     533             : }
     534             : 
     535             : namespace strings {
     536             : 
     537           0 : string Utf8SafeCEscape(const string& src) {
     538           0 :   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
     539           0 :   scoped_array<char> dest(new char[dest_length]);
     540           0 :   const int len = CEscapeInternal(src.data(), src.size(),
     541           0 :                                   dest.get(), dest_length, false, true);
     542           0 :   GOOGLE_DCHECK_GE(len, 0);
     543           0 :   return string(dest.get(), len);
     544             : }
     545             : 
     546           0 : string CHexEscape(const string& src) {
     547           0 :   const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
     548           0 :   scoped_array<char> dest(new char[dest_length]);
     549           0 :   const int len = CEscapeInternal(src.data(), src.size(),
     550           0 :                                   dest.get(), dest_length, true, false);
     551           0 :   GOOGLE_DCHECK_GE(len, 0);
     552           0 :   return string(dest.get(), len);
     553             : }
     554             : 
     555             : }  // namespace strings
     556             : 
     557             : // ----------------------------------------------------------------------
     558             : // strto32_adaptor()
     559             : // strtou32_adaptor()
     560             : //    Implementation of strto[u]l replacements that have identical
     561             : //    overflow and underflow characteristics for both ILP-32 and LP-64
     562             : //    platforms, including errno preservation in error-free calls.
     563             : // ----------------------------------------------------------------------
     564             : 
     565           0 : int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
     566           0 :   const int saved_errno = errno;
     567           0 :   errno = 0;
     568           0 :   const long result = strtol(nptr, endptr, base);
     569           0 :   if (errno == ERANGE && result == LONG_MIN) {
     570           0 :     return kint32min;
     571           0 :   } else if (errno == ERANGE && result == LONG_MAX) {
     572           0 :     return kint32max;
     573           0 :   } else if (errno == 0 && result < kint32min) {
     574           0 :     errno = ERANGE;
     575           0 :     return kint32min;
     576           0 :   } else if (errno == 0 && result > kint32max) {
     577           0 :     errno = ERANGE;
     578           0 :     return kint32max;
     579             :   }
     580           0 :   if (errno == 0)
     581           0 :     errno = saved_errno;
     582           0 :   return static_cast<int32>(result);
     583             : }
     584             : 
     585           0 : uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
     586           0 :   const int saved_errno = errno;
     587           0 :   errno = 0;
     588           0 :   const unsigned long result = strtoul(nptr, endptr, base);
     589           0 :   if (errno == ERANGE && result == ULONG_MAX) {
     590           0 :     return kuint32max;
     591           0 :   } else if (errno == 0 && result > kuint32max) {
     592           0 :     errno = ERANGE;
     593           0 :     return kuint32max;
     594             :   }
     595           0 :   if (errno == 0)
     596           0 :     errno = saved_errno;
     597           0 :   return static_cast<uint32>(result);
     598             : }
     599             : 
     600           0 : inline bool safe_parse_sign(string* text  /*inout*/,
     601             :                             bool* negative_ptr  /*output*/) {
     602           0 :   const char* start = text->data();
     603           0 :   const char* end = start + text->size();
     604             : 
     605             :   // Consume whitespace.
     606           0 :   while (start < end && (start[0] == ' ')) {
     607           0 :     ++start;
     608             :   }
     609           0 :   while (start < end && (end[-1] == ' ')) {
     610           0 :     --end;
     611             :   }
     612           0 :   if (start >= end) {
     613           0 :     return false;
     614             :   }
     615             : 
     616             :   // Consume sign.
     617           0 :   *negative_ptr = (start[0] == '-');
     618           0 :   if (*negative_ptr || start[0] == '+') {
     619           0 :     ++start;
     620           0 :     if (start >= end) {
     621           0 :       return false;
     622             :     }
     623             :   }
     624           0 :   *text = text->substr(start - text->data(), end - start);
     625           0 :   return true;
     626             : }
     627             : 
     628           0 : inline bool safe_parse_positive_int(
     629             :     string text, int32* value_p) {
     630           0 :   int base = 10;
     631           0 :   int32 value = 0;
     632           0 :   const int32 vmax = std::numeric_limits<int32>::max();
     633             :   assert(vmax > 0);
     634             :   assert(vmax >= base);
     635           0 :   const int32 vmax_over_base = vmax / base;
     636           0 :   const char* start = text.data();
     637           0 :   const char* end = start + text.size();
     638             :   // loop over digits
     639           0 :   for (; start < end; ++start) {
     640           0 :     unsigned char c = static_cast<unsigned char>(start[0]);
     641           0 :     int digit = c - '0';
     642           0 :     if (digit >= base || digit < 0) {
     643           0 :       *value_p = value;
     644           0 :       return false;
     645             :     }
     646           0 :     if (value > vmax_over_base) {
     647           0 :       *value_p = vmax;
     648           0 :       return false;
     649             :     }
     650           0 :     value *= base;
     651           0 :     if (value > vmax - digit) {
     652           0 :       *value_p = vmax;
     653           0 :       return false;
     654             :     }
     655           0 :     value += digit;
     656             :   }
     657           0 :   *value_p = value;
     658           0 :   return true;
     659             : }
     660             : 
     661           0 : inline bool safe_parse_negative_int(
     662             :     string text, int32* value_p) {
     663           0 :   int base = 10;
     664           0 :   int32 value = 0;
     665           0 :   const int32 vmin = std::numeric_limits<int32>::min();
     666             :   assert(vmin < 0);
     667             :   assert(vmin <= 0 - base);
     668           0 :   int32 vmin_over_base = vmin / base;
     669             :   // 2003 c++ standard [expr.mul]
     670             :   // "... the sign of the remainder is implementation-defined."
     671             :   // Although (vmin/base)*base + vmin%base is always vmin.
     672             :   // 2011 c++ standard tightens the spec but we cannot rely on it.
     673           0 :   if (vmin % base > 0) {
     674           0 :     vmin_over_base += 1;
     675             :   }
     676           0 :   const char* start = text.data();
     677           0 :   const char* end = start + text.size();
     678             :   // loop over digits
     679           0 :   for (; start < end; ++start) {
     680           0 :     unsigned char c = static_cast<unsigned char>(start[0]);
     681           0 :     int digit = c - '0';
     682           0 :     if (digit >= base || digit < 0) {
     683           0 :       *value_p = value;
     684           0 :       return false;
     685             :     }
     686           0 :     if (value < vmin_over_base) {
     687           0 :       *value_p = vmin;
     688           0 :       return false;
     689             :     }
     690           0 :     value *= base;
     691           0 :     if (value < vmin + digit) {
     692           0 :       *value_p = vmin;
     693           0 :       return false;
     694             :     }
     695           0 :     value -= digit;
     696             :   }
     697           0 :   *value_p = value;
     698           0 :   return true;
     699             : }
     700             : 
     701           0 : bool safe_int(string text, int32* value_p) {
     702           0 :   *value_p = 0;
     703             :   bool negative;
     704           0 :   if (!safe_parse_sign(&text, &negative)) {
     705           0 :     return false;
     706             :   }
     707           0 :   if (!negative) {
     708           0 :     return safe_parse_positive_int(text, value_p);
     709             :   } else {
     710           0 :     return safe_parse_negative_int(text, value_p);
     711             :   }
     712             : }
     713             : 
     714             : // ----------------------------------------------------------------------
     715             : // FastIntToBuffer()
     716             : // FastInt64ToBuffer()
     717             : // FastHexToBuffer()
     718             : // FastHex64ToBuffer()
     719             : // FastHex32ToBuffer()
     720             : // ----------------------------------------------------------------------
     721             : 
     722             : // Offset into buffer where FastInt64ToBuffer places the end of string
     723             : // null character.  Also used by FastInt64ToBufferLeft.
     724             : static const int kFastInt64ToBufferOffset = 21;
     725             : 
     726           0 : char *FastInt64ToBuffer(int64 i, char* buffer) {
     727             :   // We could collapse the positive and negative sections, but that
     728             :   // would be slightly slower for positive numbers...
     729             :   // 22 bytes is enough to store -2**64, -18446744073709551616.
     730           0 :   char* p = buffer + kFastInt64ToBufferOffset;
     731           0 :   *p-- = '\0';
     732           0 :   if (i >= 0) {
     733           0 :     do {
     734           0 :       *p-- = '0' + i % 10;
     735           0 :       i /= 10;
     736           0 :     } while (i > 0);
     737           0 :     return p + 1;
     738             :   } else {
     739             :     // On different platforms, % and / have different behaviors for
     740             :     // negative numbers, so we need to jump through hoops to make sure
     741             :     // we don't divide negative numbers.
     742           0 :     if (i > -10) {
     743           0 :       i = -i;
     744           0 :       *p-- = '0' + i;
     745           0 :       *p = '-';
     746           0 :       return p;
     747             :     } else {
     748             :       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
     749           0 :       i = i + 10;
     750           0 :       i = -i;
     751           0 :       *p-- = '0' + i % 10;
     752             :       // Undo what we did a moment ago
     753           0 :       i = i / 10 + 1;
     754           0 :       do {
     755           0 :         *p-- = '0' + i % 10;
     756           0 :         i /= 10;
     757           0 :       } while (i > 0);
     758           0 :       *p = '-';
     759           0 :       return p;
     760             :     }
     761             :   }
     762             : }
     763             : 
     764             : // Offset into buffer where FastInt32ToBuffer places the end of string
     765             : // null character.  Also used by FastInt32ToBufferLeft
     766             : static const int kFastInt32ToBufferOffset = 11;
     767             : 
     768             : // Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
     769             : // compiler to generate 32 bit arithmetic instructions.  It's much faster, at
     770             : // least with 32 bit binaries.
     771           0 : char *FastInt32ToBuffer(int32 i, char* buffer) {
     772             :   // We could collapse the positive and negative sections, but that
     773             :   // would be slightly slower for positive numbers...
     774             :   // 12 bytes is enough to store -2**32, -4294967296.
     775           0 :   char* p = buffer + kFastInt32ToBufferOffset;
     776           0 :   *p-- = '\0';
     777           0 :   if (i >= 0) {
     778           0 :     do {
     779           0 :       *p-- = '0' + i % 10;
     780           0 :       i /= 10;
     781           0 :     } while (i > 0);
     782           0 :     return p + 1;
     783             :   } else {
     784             :     // On different platforms, % and / have different behaviors for
     785             :     // negative numbers, so we need to jump through hoops to make sure
     786             :     // we don't divide negative numbers.
     787           0 :     if (i > -10) {
     788           0 :       i = -i;
     789           0 :       *p-- = '0' + i;
     790           0 :       *p = '-';
     791           0 :       return p;
     792             :     } else {
     793             :       // Make sure we aren't at MIN_INT, in which case we can't say i = -i
     794           0 :       i = i + 10;
     795           0 :       i = -i;
     796           0 :       *p-- = '0' + i % 10;
     797             :       // Undo what we did a moment ago
     798           0 :       i = i / 10 + 1;
     799           0 :       do {
     800           0 :         *p-- = '0' + i % 10;
     801           0 :         i /= 10;
     802           0 :       } while (i > 0);
     803           0 :       *p = '-';
     804           0 :       return p;
     805             :     }
     806             :   }
     807             : }
     808             : 
     809           0 : char *FastHexToBuffer(int i, char* buffer) {
     810           0 :   GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
     811             : 
     812             :   static const char *hexdigits = "0123456789abcdef";
     813           0 :   char *p = buffer + 21;
     814           0 :   *p-- = '\0';
     815           0 :   do {
     816           0 :     *p-- = hexdigits[i & 15];   // mod by 16
     817           0 :     i >>= 4;                    // divide by 16
     818           0 :   } while (i > 0);
     819           0 :   return p + 1;
     820             : }
     821             : 
     822           0 : char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
     823             :   static const char *hexdigits = "0123456789abcdef";
     824           0 :   buffer[num_byte] = '\0';
     825           0 :   for (int i = num_byte - 1; i >= 0; i--) {
     826             : #ifdef _M_X64
     827             :     // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
     828             :     // block. Given that the uint32 cast was to improve performance on 32-bit
     829             :     // platforms, we use 64-bit '&' directly.
     830             :     buffer[i] = hexdigits[value & 0xf];
     831             : #else
     832           0 :     buffer[i] = hexdigits[uint32(value) & 0xf];
     833             : #endif
     834           0 :     value >>= 4;
     835             :   }
     836           0 :   return buffer;
     837             : }
     838             : 
     839           0 : char *FastHex64ToBuffer(uint64 value, char* buffer) {
     840           0 :   return InternalFastHexToBuffer(value, buffer, 16);
     841             : }
     842             : 
     843           0 : char *FastHex32ToBuffer(uint32 value, char* buffer) {
     844           0 :   return InternalFastHexToBuffer(value, buffer, 8);
     845             : }
     846             : 
     847             : static inline char* PlaceNum(char* p, int num, char prev_sep) {
     848             :    *p-- = '0' + num % 10;
     849             :    *p-- = '0' + num / 10;
     850             :    *p-- = prev_sep;
     851             :    return p;
     852             : }
     853             : 
     854             : // ----------------------------------------------------------------------
     855             : // FastInt32ToBufferLeft()
     856             : // FastUInt32ToBufferLeft()
     857             : // FastInt64ToBufferLeft()
     858             : // FastUInt64ToBufferLeft()
     859             : //
     860             : // Like the Fast*ToBuffer() functions above, these are intended for speed.
     861             : // Unlike the Fast*ToBuffer() functions, however, these functions write
     862             : // their output to the beginning of the buffer (hence the name, as the
     863             : // output is left-aligned).  The caller is responsible for ensuring that
     864             : // the buffer has enough space to hold the output.
     865             : //
     866             : // Returns a pointer to the end of the string (i.e. the null character
     867             : // terminating the string).
     868             : // ----------------------------------------------------------------------
     869             : 
     870             : static const char two_ASCII_digits[100][2] = {
     871             :   {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
     872             :   {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
     873             :   {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
     874             :   {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
     875             :   {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
     876             :   {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
     877             :   {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
     878             :   {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
     879             :   {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
     880             :   {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
     881             :   {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
     882             :   {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
     883             :   {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
     884             :   {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
     885             :   {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
     886             :   {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
     887             :   {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
     888             :   {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
     889             :   {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
     890             :   {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
     891             : };
     892             : 
     893           0 : char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
     894             :   int digits;
     895           0 :   const char *ASCII_digits = NULL;
     896             :   // The idea of this implementation is to trim the number of divides to as few
     897             :   // as possible by using multiplication and subtraction rather than mod (%),
     898             :   // and by outputting two digits at a time rather than one.
     899             :   // The huge-number case is first, in the hopes that the compiler will output
     900             :   // that case in one branch-free block of code, and only output conditional
     901             :   // branches into it from below.
     902           0 :   if (u >= 1000000000) {  // >= 1,000,000,000
     903           0 :     digits = u / 100000000;  // 100,000,000
     904           0 :     ASCII_digits = two_ASCII_digits[digits];
     905           0 :     buffer[0] = ASCII_digits[0];
     906           0 :     buffer[1] = ASCII_digits[1];
     907           0 :     buffer += 2;
     908             : sublt100_000_000:
     909           0 :     u -= digits * 100000000;  // 100,000,000
     910             : lt100_000_000:
     911           0 :     digits = u / 1000000;  // 1,000,000
     912           0 :     ASCII_digits = two_ASCII_digits[digits];
     913           0 :     buffer[0] = ASCII_digits[0];
     914           0 :     buffer[1] = ASCII_digits[1];
     915           0 :     buffer += 2;
     916             : sublt1_000_000:
     917           0 :     u -= digits * 1000000;  // 1,000,000
     918             : lt1_000_000:
     919           0 :     digits = u / 10000;  // 10,000
     920           0 :     ASCII_digits = two_ASCII_digits[digits];
     921           0 :     buffer[0] = ASCII_digits[0];
     922           0 :     buffer[1] = ASCII_digits[1];
     923           0 :     buffer += 2;
     924             : sublt10_000:
     925           0 :     u -= digits * 10000;  // 10,000
     926             : lt10_000:
     927           0 :     digits = u / 100;
     928           0 :     ASCII_digits = two_ASCII_digits[digits];
     929           0 :     buffer[0] = ASCII_digits[0];
     930           0 :     buffer[1] = ASCII_digits[1];
     931           0 :     buffer += 2;
     932             : sublt100:
     933           0 :     u -= digits * 100;
     934             : lt100:
     935           0 :     digits = u;
     936           0 :     ASCII_digits = two_ASCII_digits[digits];
     937           0 :     buffer[0] = ASCII_digits[0];
     938           0 :     buffer[1] = ASCII_digits[1];
     939           0 :     buffer += 2;
     940             : done:
     941           0 :     *buffer = 0;
     942           0 :     return buffer;
     943             :   }
     944             : 
     945           0 :   if (u < 100) {
     946           0 :     digits = u;
     947           0 :     if (u >= 10) goto lt100;
     948           0 :     *buffer++ = '0' + digits;
     949           0 :     goto done;
     950             :   }
     951           0 :   if (u  <  10000) {   // 10,000
     952           0 :     if (u >= 1000) goto lt10_000;
     953           0 :     digits = u / 100;
     954           0 :     *buffer++ = '0' + digits;
     955           0 :     goto sublt100;
     956             :   }
     957           0 :   if (u  <  1000000) {   // 1,000,000
     958           0 :     if (u >= 100000) goto lt1_000_000;
     959           0 :     digits = u / 10000;  //    10,000
     960           0 :     *buffer++ = '0' + digits;
     961           0 :     goto sublt10_000;
     962             :   }
     963           0 :   if (u  <  100000000) {   // 100,000,000
     964           0 :     if (u >= 10000000) goto lt100_000_000;
     965           0 :     digits = u / 1000000;  //   1,000,000
     966           0 :     *buffer++ = '0' + digits;
     967           0 :     goto sublt1_000_000;
     968             :   }
     969             :   // we already know that u < 1,000,000,000
     970           0 :   digits = u / 100000000;   // 100,000,000
     971           0 :   *buffer++ = '0' + digits;
     972           0 :   goto sublt100_000_000;
     973             : }
     974             : 
     975           0 : char* FastInt32ToBufferLeft(int32 i, char* buffer) {
     976           0 :   uint32 u = i;
     977           0 :   if (i < 0) {
     978           0 :     *buffer++ = '-';
     979           0 :     u = -i;
     980             :   }
     981           0 :   return FastUInt32ToBufferLeft(u, buffer);
     982             : }
     983             : 
     984           0 : char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
     985             :   int digits;
     986           0 :   const char *ASCII_digits = NULL;
     987             : 
     988           0 :   uint32 u = static_cast<uint32>(u64);
     989           0 :   if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
     990             : 
     991           0 :   uint64 top_11_digits = u64 / 1000000000;
     992           0 :   buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
     993           0 :   u = u64 - (top_11_digits * 1000000000);
     994             : 
     995           0 :   digits = u / 10000000;  // 10,000,000
     996           0 :   GOOGLE_DCHECK_LT(digits, 100);
     997           0 :   ASCII_digits = two_ASCII_digits[digits];
     998           0 :   buffer[0] = ASCII_digits[0];
     999           0 :   buffer[1] = ASCII_digits[1];
    1000           0 :   buffer += 2;
    1001           0 :   u -= digits * 10000000;  // 10,000,000
    1002           0 :   digits = u / 100000;  // 100,000
    1003           0 :   ASCII_digits = two_ASCII_digits[digits];
    1004           0 :   buffer[0] = ASCII_digits[0];
    1005           0 :   buffer[1] = ASCII_digits[1];
    1006           0 :   buffer += 2;
    1007           0 :   u -= digits * 100000;  // 100,000
    1008           0 :   digits = u / 1000;  // 1,000
    1009           0 :   ASCII_digits = two_ASCII_digits[digits];
    1010           0 :   buffer[0] = ASCII_digits[0];
    1011           0 :   buffer[1] = ASCII_digits[1];
    1012           0 :   buffer += 2;
    1013           0 :   u -= digits * 1000;  // 1,000
    1014           0 :   digits = u / 10;
    1015           0 :   ASCII_digits = two_ASCII_digits[digits];
    1016           0 :   buffer[0] = ASCII_digits[0];
    1017           0 :   buffer[1] = ASCII_digits[1];
    1018           0 :   buffer += 2;
    1019           0 :   u -= digits * 10;
    1020           0 :   digits = u;
    1021           0 :   *buffer++ = '0' + digits;
    1022           0 :   *buffer = 0;
    1023           0 :   return buffer;
    1024             : }
    1025             : 
    1026           0 : char* FastInt64ToBufferLeft(int64 i, char* buffer) {
    1027           0 :   uint64 u = i;
    1028           0 :   if (i < 0) {
    1029           0 :     *buffer++ = '-';
    1030           0 :     u = -i;
    1031             :   }
    1032           0 :   return FastUInt64ToBufferLeft(u, buffer);
    1033             : }
    1034             : 
    1035             : // ----------------------------------------------------------------------
    1036             : // SimpleItoa()
    1037             : //    Description: converts an integer to a string.
    1038             : //
    1039             : //    Return value: string
    1040             : // ----------------------------------------------------------------------
    1041             : 
    1042           0 : string SimpleItoa(int i) {
    1043             :   char buffer[kFastToBufferSize];
    1044           0 :   return (sizeof(i) == 4) ?
    1045             :     FastInt32ToBuffer(i, buffer) :
    1046           0 :     FastInt64ToBuffer(i, buffer);
    1047             : }
    1048             : 
    1049           0 : string SimpleItoa(unsigned int i) {
    1050             :   char buffer[kFastToBufferSize];
    1051             :   return string(buffer, (sizeof(i) == 4) ?
    1052             :     FastUInt32ToBufferLeft(i, buffer) :
    1053           0 :     FastUInt64ToBufferLeft(i, buffer));
    1054             : }
    1055             : 
    1056           0 : string SimpleItoa(long i) {
    1057             :   char buffer[kFastToBufferSize];
    1058           0 :   return (sizeof(i) == 4) ?
    1059             :     FastInt32ToBuffer(i, buffer) :
    1060           0 :     FastInt64ToBuffer(i, buffer);
    1061             : }
    1062             : 
    1063           0 : string SimpleItoa(unsigned long i) {
    1064             :   char buffer[kFastToBufferSize];
    1065             :   return string(buffer, (sizeof(i) == 4) ?
    1066             :     FastUInt32ToBufferLeft(i, buffer) :
    1067           0 :     FastUInt64ToBufferLeft(i, buffer));
    1068             : }
    1069             : 
    1070           0 : string SimpleItoa(long long i) {
    1071             :   char buffer[kFastToBufferSize];
    1072           0 :   return (sizeof(i) == 4) ?
    1073             :     FastInt32ToBuffer(i, buffer) :
    1074           0 :     FastInt64ToBuffer(i, buffer);
    1075             : }
    1076             : 
    1077           0 : string SimpleItoa(unsigned long long i) {
    1078             :   char buffer[kFastToBufferSize];
    1079             :   return string(buffer, (sizeof(i) == 4) ?
    1080             :     FastUInt32ToBufferLeft(i, buffer) :
    1081           0 :     FastUInt64ToBufferLeft(i, buffer));
    1082             : }
    1083             : 
    1084             : // ----------------------------------------------------------------------
    1085             : // SimpleDtoa()
    1086             : // SimpleFtoa()
    1087             : // DoubleToBuffer()
    1088             : // FloatToBuffer()
    1089             : //    We want to print the value without losing precision, but we also do
    1090             : //    not want to print more digits than necessary.  This turns out to be
    1091             : //    trickier than it sounds.  Numbers like 0.2 cannot be represented
    1092             : //    exactly in binary.  If we print 0.2 with a very large precision,
    1093             : //    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
    1094             : //    On the other hand, if we set the precision too low, we lose
    1095             : //    significant digits when printing numbers that actually need them.
    1096             : //    It turns out there is no precision value that does the right thing
    1097             : //    for all numbers.
    1098             : //
    1099             : //    Our strategy is to first try printing with a precision that is never
    1100             : //    over-precise, then parse the result with strtod() to see if it
    1101             : //    matches.  If not, we print again with a precision that will always
    1102             : //    give a precise result, but may use more digits than necessary.
    1103             : //
    1104             : //    An arguably better strategy would be to use the algorithm described
    1105             : //    in "How to Print Floating-Point Numbers Accurately" by Steele &
    1106             : //    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
    1107             : //    however, that the following implementation is about as fast as
    1108             : //    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
    1109             : //    will not scale well on multi-core machines.  DMG's code is slightly
    1110             : //    more accurate (in that it will never use more digits than
    1111             : //    necessary), but this is probably irrelevant for most users.
    1112             : //
    1113             : //    Rob Pike and Ken Thompson also have an implementation of dtoa() in
    1114             : //    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
    1115             : //    one in that it makes guesses and then uses strtod() to check them.
    1116             : //    Their implementation is faster because they use their own code to
    1117             : //    generate the digits in the first place rather than use snprintf(),
    1118             : //    thus avoiding format string parsing overhead.  However, this makes
    1119             : //    it considerably more complicated than the following implementation,
    1120             : //    and it is embedded in a larger library.  If speed turns out to be
    1121             : //    an issue, we could re-implement this in terms of their
    1122             : //    implementation.
    1123             : // ----------------------------------------------------------------------
    1124             : 
    1125           0 : string SimpleDtoa(double value) {
    1126             :   char buffer[kDoubleToBufferSize];
    1127           0 :   return DoubleToBuffer(value, buffer);
    1128             : }
    1129             : 
    1130           0 : string SimpleFtoa(float value) {
    1131             :   char buffer[kFloatToBufferSize];
    1132           0 :   return FloatToBuffer(value, buffer);
    1133             : }
    1134             : 
    1135           0 : static inline bool IsValidFloatChar(char c) {
    1136           0 :   return ('0' <= c && c <= '9') ||
    1137           0 :          c == 'e' || c == 'E' ||
    1138           0 :          c == '+' || c == '-';
    1139             : }
    1140             : 
    1141           0 : void DelocalizeRadix(char* buffer) {
    1142             :   // Fast check:  if the buffer has a normal decimal point, assume no
    1143             :   // translation is needed.
    1144           0 :   if (strchr(buffer, '.') != NULL) return;
    1145             : 
    1146             :   // Find the first unknown character.
    1147           0 :   while (IsValidFloatChar(*buffer)) ++buffer;
    1148             : 
    1149           0 :   if (*buffer == '\0') {
    1150             :     // No radix character found.
    1151           0 :     return;
    1152             :   }
    1153             : 
    1154             :   // We are now pointing at the locale-specific radix character.  Replace it
    1155             :   // with '.'.
    1156           0 :   *buffer = '.';
    1157           0 :   ++buffer;
    1158             : 
    1159           0 :   if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
    1160             :     // It appears the radix was a multi-byte character.  We need to remove the
    1161             :     // extra bytes.
    1162           0 :     char* target = buffer;
    1163           0 :     do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
    1164           0 :     memmove(target, buffer, strlen(buffer) + 1);
    1165             :   }
    1166             : }
    1167             : 
    1168           0 : char* DoubleToBuffer(double value, char* buffer) {
    1169             :   // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
    1170             :   // platforms these days.  Just in case some system exists where DBL_DIG
    1171             :   // is significantly larger -- and risks overflowing our buffer -- we have
    1172             :   // this assert.
    1173             :   GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
    1174             : 
    1175           0 :   if (value == numeric_limits<double>::infinity()) {
    1176           0 :     strcpy(buffer, "inf");
    1177           0 :     return buffer;
    1178           0 :   } else if (value == -numeric_limits<double>::infinity()) {
    1179           0 :     strcpy(buffer, "-inf");
    1180           0 :     return buffer;
    1181           0 :   } else if (IsNaN(value)) {
    1182           0 :     strcpy(buffer, "nan");
    1183           0 :     return buffer;
    1184             :   }
    1185             : 
    1186             :   int snprintf_result =
    1187           0 :     snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
    1188             : 
    1189             :   // The snprintf should never overflow because the buffer is significantly
    1190             :   // larger than the precision we asked for.
    1191           0 :   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
    1192             : 
    1193             :   // We need to make parsed_value volatile in order to force the compiler to
    1194             :   // write it out to the stack.  Otherwise, it may keep the value in a
    1195             :   // register, and if it does that, it may keep it as a long double instead
    1196             :   // of a double.  This long double may have extra bits that make it compare
    1197             :   // unequal to "value" even though it would be exactly equal if it were
    1198             :   // truncated to a double.
    1199           0 :   volatile double parsed_value = strtod(buffer, NULL);
    1200           0 :   if (parsed_value != value) {
    1201             :     int snprintf_result =
    1202           0 :       snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
    1203             : 
    1204             :     // Should never overflow; see above.
    1205           0 :     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
    1206             :   }
    1207             : 
    1208           0 :   DelocalizeRadix(buffer);
    1209           0 :   return buffer;
    1210             : }
    1211             : 
    1212           0 : bool safe_strtof(const char* str, float* value) {
    1213             :   char* endptr;
    1214           0 :   errno = 0;  // errno only gets set on errors
    1215             : #if defined(_WIN32) || defined (__hpux)  // has no strtof()
    1216             :   *value = strtod(str, &endptr);
    1217             : #else
    1218           0 :   *value = strtof(str, &endptr);
    1219             : #endif
    1220           0 :   return *str != 0 && *endptr == 0 && errno == 0;
    1221             : }
    1222             : 
    1223           0 : char* FloatToBuffer(float value, char* buffer) {
    1224             :   // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
    1225             :   // platforms these days.  Just in case some system exists where FLT_DIG
    1226             :   // is significantly larger -- and risks overflowing our buffer -- we have
    1227             :   // this assert.
    1228             :   GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
    1229             : 
    1230           0 :   if (value == numeric_limits<double>::infinity()) {
    1231           0 :     strcpy(buffer, "inf");
    1232           0 :     return buffer;
    1233           0 :   } else if (value == -numeric_limits<double>::infinity()) {
    1234           0 :     strcpy(buffer, "-inf");
    1235           0 :     return buffer;
    1236           0 :   } else if (IsNaN(value)) {
    1237           0 :     strcpy(buffer, "nan");
    1238           0 :     return buffer;
    1239             :   }
    1240             : 
    1241             :   int snprintf_result =
    1242           0 :     snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
    1243             : 
    1244             :   // The snprintf should never overflow because the buffer is significantly
    1245             :   // larger than the precision we asked for.
    1246           0 :   GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
    1247             : 
    1248             :   float parsed_value;
    1249           0 :   if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    1250             :     int snprintf_result =
    1251           0 :       snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
    1252             : 
    1253             :     // Should never overflow; see above.
    1254           0 :     GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
    1255             :   }
    1256             : 
    1257           0 :   DelocalizeRadix(buffer);
    1258           0 :   return buffer;
    1259             : }
    1260             : 
    1261           0 : string ToHex(uint64 num) {
    1262           0 :   if (num == 0) {
    1263           0 :     return string("0");
    1264             :   }
    1265             : 
    1266             :   // Compute hex bytes in reverse order, writing to the back of the
    1267             :   // buffer.
    1268             :   char buf[16];  // No more than 16 hex digits needed.
    1269           0 :   char* bufptr = buf + 16;
    1270             :   static const char kHexChars[] = "0123456789abcdef";
    1271           0 :   while (num != 0) {
    1272           0 :     *--bufptr = kHexChars[num & 0xf];
    1273           0 :     num >>= 4;
    1274             :   }
    1275             : 
    1276           0 :   return string(bufptr, buf + 16 - bufptr);
    1277             : }
    1278             : 
    1279             : }  // namespace protobuf
    1280             : }  // namespace google

Generated by: LCOV version 1.13