LCOV - code coverage report
Current view: top level - media/libjpeg - jchuff.c (source / functions) Hit Total Coverage
Test: output.info Lines: 0 326 0.0 %
Date: 2017-07-14 16:53:18 Functions: 0 14 0.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * jchuff.c
       3             :  *
       4             :  * This file was part of the Independent JPEG Group's software:
       5             :  * Copyright (C) 1991-1997, Thomas G. Lane.
       6             :  * libjpeg-turbo Modifications:
       7             :  * Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
       8             :  * Copyright (C) 2015, Matthieu Darbois.
       9             :  * For conditions of distribution and use, see the accompanying README.ijg
      10             :  * file.
      11             :  *
      12             :  * This file contains Huffman entropy encoding routines.
      13             :  *
      14             :  * Much of the complexity here has to do with supporting output suspension.
      15             :  * If the data destination module demands suspension, we want to be able to
      16             :  * back up to the start of the current MCU.  To do this, we copy state
      17             :  * variables into local working storage, and update them back to the
      18             :  * permanent JPEG objects only upon successful completion of an MCU.
      19             :  */
      20             : 
      21             : #define JPEG_INTERNALS
      22             : #include "jinclude.h"
      23             : #include "jpeglib.h"
      24             : #include "jsimd.h"
      25             : #include "jconfigint.h"
      26             : #include <limits.h>
      27             : 
      28             : /*
      29             :  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
      30             :  * used for bit counting rather than the lookup table.  This will reduce the
      31             :  * memory footprint by 64k, which is important for some mobile applications
      32             :  * that create many isolated instances of libjpeg-turbo (web browsers, for
      33             :  * instance.)  This may improve performance on some mobile platforms as well.
      34             :  * This feature is enabled by default only on ARM processors, because some x86
      35             :  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
      36             :  * shown to have a significant performance impact even on the x86 chips that
      37             :  * have a fast implementation of it.  When building for ARMv6, you can
      38             :  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
      39             :  * flags (this defines __thumb__).
      40             :  */
      41             : 
      42             : /* NOTE: Both GCC and Clang define __GNUC__ */
      43             : #if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
      44             : #if !defined __thumb__ || defined __thumb2__
      45             : #define USE_CLZ_INTRINSIC
      46             : #endif
      47             : #endif
      48             : 
      49             : #ifdef USE_CLZ_INTRINSIC
      50             : #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
      51             : #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
      52             : #else
      53             : #include "jpeg_nbits_table.h"
      54             : #define JPEG_NBITS(x) (jpeg_nbits_table[x])
      55             : #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
      56             : #endif
      57             : 
      58             : #ifndef min
      59             :  #define min(a,b) ((a)<(b)?(a):(b))
      60             : #endif
      61             : 
      62             : 
      63             : /* Expanded entropy encoder object for Huffman encoding.
      64             :  *
      65             :  * The savable_state subrecord contains fields that change within an MCU,
      66             :  * but must not be updated permanently until we complete the MCU.
      67             :  */
      68             : 
      69             : typedef struct {
      70             :   size_t put_buffer;            /* current bit-accumulation buffer */
      71             :   int put_bits;                 /* # of bits now in it */
      72             :   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
      73             : } savable_state;
      74             : 
      75             : /* This macro is to work around compilers with missing or broken
      76             :  * structure assignment.  You'll need to fix this code if you have
      77             :  * such a compiler and you change MAX_COMPS_IN_SCAN.
      78             :  */
      79             : 
      80             : #ifndef NO_STRUCT_ASSIGN
      81             : #define ASSIGN_STATE(dest,src)  ((dest) = (src))
      82             : #else
      83             : #if MAX_COMPS_IN_SCAN == 4
      84             : #define ASSIGN_STATE(dest,src)  \
      85             :         ((dest).put_buffer = (src).put_buffer, \
      86             :          (dest).put_bits = (src).put_bits, \
      87             :          (dest).last_dc_val[0] = (src).last_dc_val[0], \
      88             :          (dest).last_dc_val[1] = (src).last_dc_val[1], \
      89             :          (dest).last_dc_val[2] = (src).last_dc_val[2], \
      90             :          (dest).last_dc_val[3] = (src).last_dc_val[3])
      91             : #endif
      92             : #endif
      93             : 
      94             : 
      95             : typedef struct {
      96             :   struct jpeg_entropy_encoder pub; /* public fields */
      97             : 
      98             :   savable_state saved;          /* Bit buffer & DC state at start of MCU */
      99             : 
     100             :   /* These fields are NOT loaded into local working state. */
     101             :   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
     102             :   int next_restart_num;         /* next restart number to write (0-7) */
     103             : 
     104             :   /* Pointers to derived tables (these workspaces have image lifespan) */
     105             :   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
     106             :   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
     107             : 
     108             : #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
     109             :   long *dc_count_ptrs[NUM_HUFF_TBLS];
     110             :   long *ac_count_ptrs[NUM_HUFF_TBLS];
     111             : #endif
     112             : 
     113             :   int simd;
     114             : } huff_entropy_encoder;
     115             : 
     116             : typedef huff_entropy_encoder *huff_entropy_ptr;
     117             : 
     118             : /* Working state while writing an MCU.
     119             :  * This struct contains all the fields that are needed by subroutines.
     120             :  */
     121             : 
     122             : typedef struct {
     123             :   JOCTET *next_output_byte;     /* => next byte to write in buffer */
     124             :   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
     125             :   savable_state cur;            /* Current bit buffer & DC state */
     126             :   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
     127             : } working_state;
     128             : 
     129             : 
     130             : /* Forward declarations */
     131             : METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
     132             : METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
     133             : #ifdef ENTROPY_OPT_SUPPORTED
     134             : METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
     135             :                                       JBLOCKROW *MCU_data);
     136             : METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
     137             : #endif
     138             : 
     139             : 
     140             : /*
     141             :  * Initialize for a Huffman-compressed scan.
     142             :  * If gather_statistics is TRUE, we do not output anything during the scan,
     143             :  * just count the Huffman symbols used and generate Huffman code tables.
     144             :  */
     145             : 
     146             : METHODDEF(void)
     147           0 : start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
     148             : {
     149           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     150             :   int ci, dctbl, actbl;
     151             :   jpeg_component_info *compptr;
     152             : 
     153           0 :   if (gather_statistics) {
     154             : #ifdef ENTROPY_OPT_SUPPORTED
     155           0 :     entropy->pub.encode_mcu = encode_mcu_gather;
     156           0 :     entropy->pub.finish_pass = finish_pass_gather;
     157             : #else
     158             :     ERREXIT(cinfo, JERR_NOT_COMPILED);
     159             : #endif
     160             :   } else {
     161           0 :     entropy->pub.encode_mcu = encode_mcu_huff;
     162           0 :     entropy->pub.finish_pass = finish_pass_huff;
     163             :   }
     164             : 
     165           0 :   entropy->simd = jsimd_can_huff_encode_one_block();
     166             : 
     167           0 :   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
     168           0 :     compptr = cinfo->cur_comp_info[ci];
     169           0 :     dctbl = compptr->dc_tbl_no;
     170           0 :     actbl = compptr->ac_tbl_no;
     171           0 :     if (gather_statistics) {
     172             : #ifdef ENTROPY_OPT_SUPPORTED
     173             :       /* Check for invalid table indexes */
     174             :       /* (make_c_derived_tbl does this in the other path) */
     175           0 :       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
     176           0 :         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
     177           0 :       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
     178           0 :         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
     179             :       /* Allocate and zero the statistics tables */
     180             :       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
     181           0 :       if (entropy->dc_count_ptrs[dctbl] == NULL)
     182           0 :         entropy->dc_count_ptrs[dctbl] = (long *)
     183           0 :           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     184             :                                       257 * sizeof(long));
     185           0 :       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
     186           0 :       if (entropy->ac_count_ptrs[actbl] == NULL)
     187           0 :         entropy->ac_count_ptrs[actbl] = (long *)
     188           0 :           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     189             :                                       257 * sizeof(long));
     190           0 :       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
     191             : #endif
     192             :     } else {
     193             :       /* Compute derived values for Huffman tables */
     194             :       /* We may do this more than once for a table, but it's not expensive */
     195           0 :       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
     196             :                               & entropy->dc_derived_tbls[dctbl]);
     197           0 :       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
     198             :                               & entropy->ac_derived_tbls[actbl]);
     199             :     }
     200             :     /* Initialize DC predictions to 0 */
     201           0 :     entropy->saved.last_dc_val[ci] = 0;
     202             :   }
     203             : 
     204             :   /* Initialize bit buffer to empty */
     205           0 :   entropy->saved.put_buffer = 0;
     206           0 :   entropy->saved.put_bits = 0;
     207             : 
     208             :   /* Initialize restart stuff */
     209           0 :   entropy->restarts_to_go = cinfo->restart_interval;
     210           0 :   entropy->next_restart_num = 0;
     211           0 : }
     212             : 
     213             : 
     214             : /*
     215             :  * Compute the derived values for a Huffman table.
     216             :  * This routine also performs some validation checks on the table.
     217             :  *
     218             :  * Note this is also used by jcphuff.c.
     219             :  */
     220             : 
     221             : GLOBAL(void)
     222           0 : jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
     223             :                          c_derived_tbl **pdtbl)
     224             : {
     225             :   JHUFF_TBL *htbl;
     226             :   c_derived_tbl *dtbl;
     227             :   int p, i, l, lastp, si, maxsymbol;
     228             :   char huffsize[257];
     229             :   unsigned int huffcode[257];
     230             :   unsigned int code;
     231             : 
     232             :   /* Note that huffsize[] and huffcode[] are filled in code-length order,
     233             :    * paralleling the order of the symbols themselves in htbl->huffval[].
     234             :    */
     235             : 
     236             :   /* Find the input Huffman table */
     237           0 :   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
     238           0 :     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
     239           0 :   htbl =
     240           0 :     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
     241           0 :   if (htbl == NULL)
     242           0 :     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
     243             : 
     244             :   /* Allocate a workspace if we haven't already done so. */
     245           0 :   if (*pdtbl == NULL)
     246           0 :     *pdtbl = (c_derived_tbl *)
     247           0 :       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
     248             :                                   sizeof(c_derived_tbl));
     249           0 :   dtbl = *pdtbl;
     250             : 
     251             :   /* Figure C.1: make table of Huffman code length for each symbol */
     252             : 
     253           0 :   p = 0;
     254           0 :   for (l = 1; l <= 16; l++) {
     255           0 :     i = (int) htbl->bits[l];
     256           0 :     if (i < 0 || p + i > 256)   /* protect against table overrun */
     257           0 :       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     258           0 :     while (i--)
     259           0 :       huffsize[p++] = (char) l;
     260             :   }
     261           0 :   huffsize[p] = 0;
     262           0 :   lastp = p;
     263             : 
     264             :   /* Figure C.2: generate the codes themselves */
     265             :   /* We also validate that the counts represent a legal Huffman code tree. */
     266             : 
     267           0 :   code = 0;
     268           0 :   si = huffsize[0];
     269           0 :   p = 0;
     270           0 :   while (huffsize[p]) {
     271           0 :     while (((int) huffsize[p]) == si) {
     272           0 :       huffcode[p++] = code;
     273           0 :       code++;
     274             :     }
     275             :     /* code is now 1 more than the last code used for codelength si; but
     276             :      * it must still fit in si bits, since no code is allowed to be all ones.
     277             :      */
     278           0 :     if (((JLONG) code) >= (((JLONG) 1) << si))
     279           0 :       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     280           0 :     code <<= 1;
     281           0 :     si++;
     282             :   }
     283             : 
     284             :   /* Figure C.3: generate encoding tables */
     285             :   /* These are code and size indexed by symbol value */
     286             : 
     287             :   /* Set all codeless symbols to have code length 0;
     288             :    * this lets us detect duplicate VAL entries here, and later
     289             :    * allows emit_bits to detect any attempt to emit such symbols.
     290             :    */
     291           0 :   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
     292             : 
     293             :   /* This is also a convenient place to check for out-of-range
     294             :    * and duplicated VAL entries.  We allow 0..255 for AC symbols
     295             :    * but only 0..15 for DC.  (We could constrain them further
     296             :    * based on data depth and mode, but this seems enough.)
     297             :    */
     298           0 :   maxsymbol = isDC ? 15 : 255;
     299             : 
     300           0 :   for (p = 0; p < lastp; p++) {
     301           0 :     i = htbl->huffval[p];
     302           0 :     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
     303           0 :       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
     304           0 :     dtbl->ehufco[i] = huffcode[p];
     305           0 :     dtbl->ehufsi[i] = huffsize[p];
     306             :   }
     307           0 : }
     308             : 
     309             : 
     310             : /* Outputting bytes to the file */
     311             : 
     312             : /* Emit a byte, taking 'action' if must suspend. */
     313             : #define emit_byte(state,val,action)  \
     314             :         { *(state)->next_output_byte++ = (JOCTET) (val);  \
     315             :           if (--(state)->free_in_buffer == 0)  \
     316             :             if (! dump_buffer(state))  \
     317             :               { action; } }
     318             : 
     319             : 
     320             : LOCAL(boolean)
     321           0 : dump_buffer (working_state *state)
     322             : /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
     323             : {
     324           0 :   struct jpeg_destination_mgr *dest = state->cinfo->dest;
     325             : 
     326           0 :   if (! (*dest->empty_output_buffer) (state->cinfo))
     327           0 :     return FALSE;
     328             :   /* After a successful buffer dump, must reset buffer pointers */
     329           0 :   state->next_output_byte = dest->next_output_byte;
     330           0 :   state->free_in_buffer = dest->free_in_buffer;
     331           0 :   return TRUE;
     332             : }
     333             : 
     334             : 
     335             : /* Outputting bits to the file */
     336             : 
     337             : /* These macros perform the same task as the emit_bits() function in the
     338             :  * original libjpeg code.  In addition to reducing overhead by explicitly
     339             :  * inlining the code, additional performance is achieved by taking into
     340             :  * account the size of the bit buffer and waiting until it is almost full
     341             :  * before emptying it.  This mostly benefits 64-bit platforms, since 6
     342             :  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
     343             :  */
     344             : 
     345             : #define EMIT_BYTE() { \
     346             :   JOCTET c; \
     347             :   put_bits -= 8; \
     348             :   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
     349             :   *buffer++ = c; \
     350             :   if (c == 0xFF)  /* need to stuff a zero byte? */ \
     351             :     *buffer++ = 0; \
     352             :  }
     353             : 
     354             : #define PUT_BITS(code, size) { \
     355             :   put_bits += size; \
     356             :   put_buffer = (put_buffer << size) | code; \
     357             : }
     358             : 
     359             : #define CHECKBUF15() { \
     360             :   if (put_bits > 15) { \
     361             :     EMIT_BYTE() \
     362             :     EMIT_BYTE() \
     363             :   } \
     364             : }
     365             : 
     366             : #define CHECKBUF31() { \
     367             :   if (put_bits > 31) { \
     368             :     EMIT_BYTE() \
     369             :     EMIT_BYTE() \
     370             :     EMIT_BYTE() \
     371             :     EMIT_BYTE() \
     372             :   } \
     373             : }
     374             : 
     375             : #define CHECKBUF47() { \
     376             :   if (put_bits > 47) { \
     377             :     EMIT_BYTE() \
     378             :     EMIT_BYTE() \
     379             :     EMIT_BYTE() \
     380             :     EMIT_BYTE() \
     381             :     EMIT_BYTE() \
     382             :     EMIT_BYTE() \
     383             :   } \
     384             : }
     385             : 
     386             : #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
     387             : #error Cannot determine word size
     388             : #endif
     389             : 
     390             : #if SIZEOF_SIZE_T==8 || defined(_WIN64)
     391             : 
     392             : #define EMIT_BITS(code, size) { \
     393             :   CHECKBUF47() \
     394             :   PUT_BITS(code, size) \
     395             : }
     396             : 
     397             : #define EMIT_CODE(code, size) { \
     398             :   temp2 &= (((JLONG) 1)<<nbits) - 1; \
     399             :   CHECKBUF31() \
     400             :   PUT_BITS(code, size) \
     401             :   PUT_BITS(temp2, nbits) \
     402             :  }
     403             : 
     404             : #else
     405             : 
     406             : #define EMIT_BITS(code, size) { \
     407             :   PUT_BITS(code, size) \
     408             :   CHECKBUF15() \
     409             : }
     410             : 
     411             : #define EMIT_CODE(code, size) { \
     412             :   temp2 &= (((JLONG) 1)<<nbits) - 1; \
     413             :   PUT_BITS(code, size) \
     414             :   CHECKBUF15() \
     415             :   PUT_BITS(temp2, nbits) \
     416             :   CHECKBUF15() \
     417             :  }
     418             : 
     419             : #endif
     420             : 
     421             : 
     422             : /* Although it is exceedingly rare, it is possible for a Huffman-encoded
     423             :  * coefficient block to be larger than the 128-byte unencoded block.  For each
     424             :  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
     425             :  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
     426             :  * encoded block.)  If, for instance, one artificially sets the AC
     427             :  * coefficients to alternating values of 32767 and -32768 (using the JPEG
     428             :  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
     429             :  * larger than 200 bytes.
     430             :  */
     431             : #define BUFSIZE (DCTSIZE2 * 4)
     432             : 
     433             : #define LOAD_BUFFER() { \
     434             :   if (state->free_in_buffer < BUFSIZE) { \
     435             :     localbuf = 1; \
     436             :     buffer = _buffer; \
     437             :   } \
     438             :   else buffer = state->next_output_byte; \
     439             :  }
     440             : 
     441             : #define STORE_BUFFER() { \
     442             :   if (localbuf) { \
     443             :     bytes = buffer - _buffer; \
     444             :     buffer = _buffer; \
     445             :     while (bytes > 0) { \
     446             :       bytestocopy = min(bytes, state->free_in_buffer); \
     447             :       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
     448             :       state->next_output_byte += bytestocopy; \
     449             :       buffer += bytestocopy; \
     450             :       state->free_in_buffer -= bytestocopy; \
     451             :       if (state->free_in_buffer == 0) \
     452             :         if (! dump_buffer(state)) return FALSE; \
     453             :       bytes -= bytestocopy; \
     454             :     } \
     455             :   } \
     456             :   else { \
     457             :     state->free_in_buffer -= (buffer - state->next_output_byte); \
     458             :     state->next_output_byte = buffer; \
     459             :   } \
     460             :  }
     461             : 
     462             : 
     463             : LOCAL(boolean)
     464           0 : flush_bits (working_state *state)
     465             : {
     466             :   JOCTET _buffer[BUFSIZE], *buffer;
     467             :   size_t put_buffer;  int put_bits;
     468           0 :   size_t bytes, bytestocopy;  int localbuf = 0;
     469             : 
     470           0 :   put_buffer = state->cur.put_buffer;
     471           0 :   put_bits = state->cur.put_bits;
     472           0 :   LOAD_BUFFER()
     473             : 
     474             :   /* fill any partial byte with ones */
     475           0 :   PUT_BITS(0x7F, 7)
     476           0 :   while (put_bits >= 8) EMIT_BYTE()
     477             : 
     478           0 :   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
     479           0 :   state->cur.put_bits = 0;
     480           0 :   STORE_BUFFER()
     481             : 
     482           0 :   return TRUE;
     483             : }
     484             : 
     485             : 
     486             : /* Encode a single block's worth of coefficients */
     487             : 
     488             : LOCAL(boolean)
     489           0 : encode_one_block_simd (working_state *state, JCOEFPTR block, int last_dc_val,
     490             :                        c_derived_tbl *dctbl, c_derived_tbl *actbl)
     491             : {
     492             :   JOCTET _buffer[BUFSIZE], *buffer;
     493           0 :   size_t bytes, bytestocopy;  int localbuf = 0;
     494             : 
     495           0 :   LOAD_BUFFER()
     496             : 
     497           0 :   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
     498             :                                        dctbl, actbl);
     499             : 
     500           0 :   STORE_BUFFER()
     501             : 
     502           0 :   return TRUE;
     503             : }
     504             : 
     505             : LOCAL(boolean)
     506           0 : encode_one_block (working_state *state, JCOEFPTR block, int last_dc_val,
     507             :                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
     508             : {
     509             :   int temp, temp2, temp3;
     510             :   int nbits;
     511             :   int r, code, size;
     512             :   JOCTET _buffer[BUFSIZE], *buffer;
     513             :   size_t put_buffer;  int put_bits;
     514           0 :   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
     515           0 :   size_t bytes, bytestocopy;  int localbuf = 0;
     516             : 
     517           0 :   put_buffer = state->cur.put_buffer;
     518           0 :   put_bits = state->cur.put_bits;
     519           0 :   LOAD_BUFFER()
     520             : 
     521             :   /* Encode the DC coefficient difference per section F.1.2.1 */
     522             : 
     523           0 :   temp = temp2 = block[0] - last_dc_val;
     524             : 
     525             :  /* This is a well-known technique for obtaining the absolute value without a
     526             :   * branch.  It is derived from an assembly language technique presented in
     527             :   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
     528             :   * Agner Fog.
     529             :   */
     530           0 :   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
     531           0 :   temp ^= temp3;
     532           0 :   temp -= temp3;
     533             : 
     534             :   /* For a negative input, want temp2 = bitwise complement of abs(input) */
     535             :   /* This code assumes we are on a two's complement machine */
     536           0 :   temp2 += temp3;
     537             : 
     538             :   /* Find the number of bits needed for the magnitude of the coefficient */
     539           0 :   nbits = JPEG_NBITS(temp);
     540             : 
     541             :   /* Emit the Huffman-coded symbol for the number of bits */
     542           0 :   code = dctbl->ehufco[nbits];
     543           0 :   size = dctbl->ehufsi[nbits];
     544           0 :   EMIT_BITS(code, size)
     545             : 
     546             :   /* Mask off any extra bits in code */
     547           0 :   temp2 &= (((JLONG) 1)<<nbits) - 1;
     548             : 
     549             :   /* Emit that number of bits of the value, if positive, */
     550             :   /* or the complement of its magnitude, if negative. */
     551           0 :   EMIT_BITS(temp2, nbits)
     552             : 
     553             :   /* Encode the AC coefficients per section F.1.2.2 */
     554             : 
     555           0 :   r = 0;                        /* r = run length of zeros */
     556             : 
     557             : /* Manually unroll the k loop to eliminate the counter variable.  This
     558             :  * improves performance greatly on systems with a limited number of
     559             :  * registers (such as x86.)
     560             :  */
     561             : #define kloop(jpeg_natural_order_of_k) {  \
     562             :   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
     563             :     r++; \
     564             :   } else { \
     565             :     temp2 = temp; \
     566             :     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
     567             :     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
     568             :     temp ^= temp3; \
     569             :     temp -= temp3; \
     570             :     temp2 += temp3; \
     571             :     nbits = JPEG_NBITS_NONZERO(temp); \
     572             :     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
     573             :     while (r > 15) { \
     574             :       EMIT_BITS(code_0xf0, size_0xf0) \
     575             :       r -= 16; \
     576             :     } \
     577             :     /* Emit Huffman symbol for run length / number of bits */ \
     578             :     temp3 = (r << 4) + nbits;  \
     579             :     code = actbl->ehufco[temp3]; \
     580             :     size = actbl->ehufsi[temp3]; \
     581             :     EMIT_CODE(code, size) \
     582             :     r = 0;  \
     583             :   } \
     584             : }
     585             : 
     586             :   /* One iteration for each value in jpeg_natural_order[] */
     587           0 :   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
     588           0 :   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
     589           0 :   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
     590           0 :   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
     591           0 :   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
     592           0 :   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
     593           0 :   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
     594           0 :   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
     595           0 :   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
     596           0 :   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
     597           0 :   kloop(55);  kloop(62);  kloop(63);
     598             : 
     599             :   /* If the last coef(s) were zero, emit an end-of-block code */
     600           0 :   if (r > 0) {
     601           0 :     code = actbl->ehufco[0];
     602           0 :     size = actbl->ehufsi[0];
     603           0 :     EMIT_BITS(code, size)
     604             :   }
     605             : 
     606           0 :   state->cur.put_buffer = put_buffer;
     607           0 :   state->cur.put_bits = put_bits;
     608           0 :   STORE_BUFFER()
     609             : 
     610           0 :   return TRUE;
     611             : }
     612             : 
     613             : 
     614             : /*
     615             :  * Emit a restart marker & resynchronize predictions.
     616             :  */
     617             : 
     618             : LOCAL(boolean)
     619           0 : emit_restart (working_state *state, int restart_num)
     620             : {
     621             :   int ci;
     622             : 
     623           0 :   if (! flush_bits(state))
     624           0 :     return FALSE;
     625             : 
     626           0 :   emit_byte(state, 0xFF, return FALSE);
     627           0 :   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
     628             : 
     629             :   /* Re-initialize DC predictions to 0 */
     630           0 :   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
     631           0 :     state->cur.last_dc_val[ci] = 0;
     632             : 
     633             :   /* The restart counter is not updated until we successfully write the MCU. */
     634             : 
     635           0 :   return TRUE;
     636             : }
     637             : 
     638             : 
     639             : /*
     640             :  * Encode and output one MCU's worth of Huffman-compressed coefficients.
     641             :  */
     642             : 
     643             : METHODDEF(boolean)
     644           0 : encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
     645             : {
     646           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     647             :   working_state state;
     648             :   int blkn, ci;
     649             :   jpeg_component_info *compptr;
     650             : 
     651             :   /* Load up working state */
     652           0 :   state.next_output_byte = cinfo->dest->next_output_byte;
     653           0 :   state.free_in_buffer = cinfo->dest->free_in_buffer;
     654           0 :   ASSIGN_STATE(state.cur, entropy->saved);
     655           0 :   state.cinfo = cinfo;
     656             : 
     657             :   /* Emit restart marker if needed */
     658           0 :   if (cinfo->restart_interval) {
     659           0 :     if (entropy->restarts_to_go == 0)
     660           0 :       if (! emit_restart(&state, entropy->next_restart_num))
     661           0 :         return FALSE;
     662             :   }
     663             : 
     664             :   /* Encode the MCU data blocks */
     665           0 :   if (entropy->simd) {
     666           0 :     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     667           0 :       ci = cinfo->MCU_membership[blkn];
     668           0 :       compptr = cinfo->cur_comp_info[ci];
     669           0 :       if (! encode_one_block_simd(&state,
     670           0 :                                   MCU_data[blkn][0], state.cur.last_dc_val[ci],
     671           0 :                                   entropy->dc_derived_tbls[compptr->dc_tbl_no],
     672           0 :                                   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
     673           0 :         return FALSE;
     674             :       /* Update last_dc_val */
     675           0 :       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
     676             :     }
     677             :   } else {
     678           0 :     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     679           0 :       ci = cinfo->MCU_membership[blkn];
     680           0 :       compptr = cinfo->cur_comp_info[ci];
     681           0 :       if (! encode_one_block(&state,
     682           0 :                              MCU_data[blkn][0], state.cur.last_dc_val[ci],
     683           0 :                              entropy->dc_derived_tbls[compptr->dc_tbl_no],
     684           0 :                              entropy->ac_derived_tbls[compptr->ac_tbl_no]))
     685           0 :         return FALSE;
     686             :       /* Update last_dc_val */
     687           0 :       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
     688             :     }
     689             :   }
     690             : 
     691             :   /* Completed MCU, so update state */
     692           0 :   cinfo->dest->next_output_byte = state.next_output_byte;
     693           0 :   cinfo->dest->free_in_buffer = state.free_in_buffer;
     694           0 :   ASSIGN_STATE(entropy->saved, state.cur);
     695             : 
     696             :   /* Update restart-interval state too */
     697           0 :   if (cinfo->restart_interval) {
     698           0 :     if (entropy->restarts_to_go == 0) {
     699           0 :       entropy->restarts_to_go = cinfo->restart_interval;
     700           0 :       entropy->next_restart_num++;
     701           0 :       entropy->next_restart_num &= 7;
     702             :     }
     703           0 :     entropy->restarts_to_go--;
     704             :   }
     705             : 
     706           0 :   return TRUE;
     707             : }
     708             : 
     709             : 
     710             : /*
     711             :  * Finish up at the end of a Huffman-compressed scan.
     712             :  */
     713             : 
     714             : METHODDEF(void)
     715           0 : finish_pass_huff (j_compress_ptr cinfo)
     716             : {
     717           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     718             :   working_state state;
     719             : 
     720             :   /* Load up working state ... flush_bits needs it */
     721           0 :   state.next_output_byte = cinfo->dest->next_output_byte;
     722           0 :   state.free_in_buffer = cinfo->dest->free_in_buffer;
     723           0 :   ASSIGN_STATE(state.cur, entropy->saved);
     724           0 :   state.cinfo = cinfo;
     725             : 
     726             :   /* Flush out the last data */
     727           0 :   if (! flush_bits(&state))
     728           0 :     ERREXIT(cinfo, JERR_CANT_SUSPEND);
     729             : 
     730             :   /* Update state */
     731           0 :   cinfo->dest->next_output_byte = state.next_output_byte;
     732           0 :   cinfo->dest->free_in_buffer = state.free_in_buffer;
     733           0 :   ASSIGN_STATE(entropy->saved, state.cur);
     734           0 : }
     735             : 
     736             : 
     737             : /*
     738             :  * Huffman coding optimization.
     739             :  *
     740             :  * We first scan the supplied data and count the number of uses of each symbol
     741             :  * that is to be Huffman-coded. (This process MUST agree with the code above.)
     742             :  * Then we build a Huffman coding tree for the observed counts.
     743             :  * Symbols which are not needed at all for the particular image are not
     744             :  * assigned any code, which saves space in the DHT marker as well as in
     745             :  * the compressed data.
     746             :  */
     747             : 
     748             : #ifdef ENTROPY_OPT_SUPPORTED
     749             : 
     750             : 
     751             : /* Process a single block's worth of coefficients */
     752             : 
     753             : LOCAL(void)
     754           0 : htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
     755             :                  long dc_counts[], long ac_counts[])
     756             : {
     757             :   register int temp;
     758             :   register int nbits;
     759             :   register int k, r;
     760             : 
     761             :   /* Encode the DC coefficient difference per section F.1.2.1 */
     762             : 
     763           0 :   temp = block[0] - last_dc_val;
     764           0 :   if (temp < 0)
     765           0 :     temp = -temp;
     766             : 
     767             :   /* Find the number of bits needed for the magnitude of the coefficient */
     768           0 :   nbits = 0;
     769           0 :   while (temp) {
     770           0 :     nbits++;
     771           0 :     temp >>= 1;
     772             :   }
     773             :   /* Check for out-of-range coefficient values.
     774             :    * Since we're encoding a difference, the range limit is twice as much.
     775             :    */
     776           0 :   if (nbits > MAX_COEF_BITS+1)
     777           0 :     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
     778             : 
     779             :   /* Count the Huffman symbol for the number of bits */
     780           0 :   dc_counts[nbits]++;
     781             : 
     782             :   /* Encode the AC coefficients per section F.1.2.2 */
     783             : 
     784           0 :   r = 0;                        /* r = run length of zeros */
     785             : 
     786           0 :   for (k = 1; k < DCTSIZE2; k++) {
     787           0 :     if ((temp = block[jpeg_natural_order[k]]) == 0) {
     788           0 :       r++;
     789             :     } else {
     790             :       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
     791           0 :       while (r > 15) {
     792           0 :         ac_counts[0xF0]++;
     793           0 :         r -= 16;
     794             :       }
     795             : 
     796             :       /* Find the number of bits needed for the magnitude of the coefficient */
     797           0 :       if (temp < 0)
     798           0 :         temp = -temp;
     799             : 
     800             :       /* Find the number of bits needed for the magnitude of the coefficient */
     801           0 :       nbits = 1;                /* there must be at least one 1 bit */
     802           0 :       while ((temp >>= 1))
     803           0 :         nbits++;
     804             :       /* Check for out-of-range coefficient values */
     805           0 :       if (nbits > MAX_COEF_BITS)
     806           0 :         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
     807             : 
     808             :       /* Count Huffman symbol for run length / number of bits */
     809           0 :       ac_counts[(r << 4) + nbits]++;
     810             : 
     811           0 :       r = 0;
     812             :     }
     813             :   }
     814             : 
     815             :   /* If the last coef(s) were zero, emit an end-of-block code */
     816           0 :   if (r > 0)
     817           0 :     ac_counts[0]++;
     818           0 : }
     819             : 
     820             : 
     821             : /*
     822             :  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
     823             :  * No data is actually output, so no suspension return is possible.
     824             :  */
     825             : 
     826             : METHODDEF(boolean)
     827           0 : encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
     828             : {
     829           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     830             :   int blkn, ci;
     831             :   jpeg_component_info *compptr;
     832             : 
     833             :   /* Take care of restart intervals if needed */
     834           0 :   if (cinfo->restart_interval) {
     835           0 :     if (entropy->restarts_to_go == 0) {
     836             :       /* Re-initialize DC predictions to 0 */
     837           0 :       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
     838           0 :         entropy->saved.last_dc_val[ci] = 0;
     839             :       /* Update restart state */
     840           0 :       entropy->restarts_to_go = cinfo->restart_interval;
     841             :     }
     842           0 :     entropy->restarts_to_go--;
     843             :   }
     844             : 
     845           0 :   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
     846           0 :     ci = cinfo->MCU_membership[blkn];
     847           0 :     compptr = cinfo->cur_comp_info[ci];
     848           0 :     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
     849           0 :                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
     850           0 :                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
     851           0 :     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
     852             :   }
     853             : 
     854           0 :   return TRUE;
     855             : }
     856             : 
     857             : 
     858             : /*
     859             :  * Generate the best Huffman code table for the given counts, fill htbl.
     860             :  * Note this is also used by jcphuff.c.
     861             :  *
     862             :  * The JPEG standard requires that no symbol be assigned a codeword of all
     863             :  * one bits (so that padding bits added at the end of a compressed segment
     864             :  * can't look like a valid code).  Because of the canonical ordering of
     865             :  * codewords, this just means that there must be an unused slot in the
     866             :  * longest codeword length category.  Section K.2 of the JPEG spec suggests
     867             :  * reserving such a slot by pretending that symbol 256 is a valid symbol
     868             :  * with count 1.  In theory that's not optimal; giving it count zero but
     869             :  * including it in the symbol set anyway should give a better Huffman code.
     870             :  * But the theoretically better code actually seems to come out worse in
     871             :  * practice, because it produces more all-ones bytes (which incur stuffed
     872             :  * zero bytes in the final file).  In any case the difference is tiny.
     873             :  *
     874             :  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
     875             :  * If some symbols have a very small but nonzero probability, the Huffman tree
     876             :  * must be adjusted to meet the code length restriction.  We currently use
     877             :  * the adjustment method suggested in JPEG section K.2.  This method is *not*
     878             :  * optimal; it may not choose the best possible limited-length code.  But
     879             :  * typically only very-low-frequency symbols will be given less-than-optimal
     880             :  * lengths, so the code is almost optimal.  Experimental comparisons against
     881             :  * an optimal limited-length-code algorithm indicate that the difference is
     882             :  * microscopic --- usually less than a hundredth of a percent of total size.
     883             :  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
     884             :  */
     885             : 
     886             : GLOBAL(void)
     887           0 : jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
     888             : {
     889             : #define MAX_CLEN 32             /* assumed maximum initial code length */
     890             :   UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
     891             :   int codesize[257];            /* codesize[k] = code length of symbol k */
     892             :   int others[257];              /* next symbol in current branch of tree */
     893             :   int c1, c2;
     894             :   int p, i, j;
     895             :   long v;
     896             : 
     897             :   /* This algorithm is explained in section K.2 of the JPEG standard */
     898             : 
     899           0 :   MEMZERO(bits, sizeof(bits));
     900           0 :   MEMZERO(codesize, sizeof(codesize));
     901           0 :   for (i = 0; i < 257; i++)
     902           0 :     others[i] = -1;             /* init links to empty */
     903             : 
     904           0 :   freq[256] = 1;                /* make sure 256 has a nonzero count */
     905             :   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
     906             :    * that no real symbol is given code-value of all ones, because 256
     907             :    * will be placed last in the largest codeword category.
     908             :    */
     909             : 
     910             :   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
     911             : 
     912             :   for (;;) {
     913             :     /* Find the smallest nonzero frequency, set c1 = its symbol */
     914             :     /* In case of ties, take the larger symbol number */
     915           0 :     c1 = -1;
     916           0 :     v = 1000000000L;
     917           0 :     for (i = 0; i <= 256; i++) {
     918           0 :       if (freq[i] && freq[i] <= v) {
     919           0 :         v = freq[i];
     920           0 :         c1 = i;
     921             :       }
     922             :     }
     923             : 
     924             :     /* Find the next smallest nonzero frequency, set c2 = its symbol */
     925             :     /* In case of ties, take the larger symbol number */
     926           0 :     c2 = -1;
     927           0 :     v = 1000000000L;
     928           0 :     for (i = 0; i <= 256; i++) {
     929           0 :       if (freq[i] && freq[i] <= v && i != c1) {
     930           0 :         v = freq[i];
     931           0 :         c2 = i;
     932             :       }
     933             :     }
     934             : 
     935             :     /* Done if we've merged everything into one frequency */
     936           0 :     if (c2 < 0)
     937           0 :       break;
     938             : 
     939             :     /* Else merge the two counts/trees */
     940           0 :     freq[c1] += freq[c2];
     941           0 :     freq[c2] = 0;
     942             : 
     943             :     /* Increment the codesize of everything in c1's tree branch */
     944           0 :     codesize[c1]++;
     945           0 :     while (others[c1] >= 0) {
     946           0 :       c1 = others[c1];
     947           0 :       codesize[c1]++;
     948             :     }
     949             : 
     950           0 :     others[c1] = c2;            /* chain c2 onto c1's tree branch */
     951             : 
     952             :     /* Increment the codesize of everything in c2's tree branch */
     953           0 :     codesize[c2]++;
     954           0 :     while (others[c2] >= 0) {
     955           0 :       c2 = others[c2];
     956           0 :       codesize[c2]++;
     957             :     }
     958             :   }
     959             : 
     960             :   /* Now count the number of symbols of each code length */
     961           0 :   for (i = 0; i <= 256; i++) {
     962           0 :     if (codesize[i]) {
     963             :       /* The JPEG standard seems to think that this can't happen, */
     964             :       /* but I'm paranoid... */
     965           0 :       if (codesize[i] > MAX_CLEN)
     966           0 :         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
     967             : 
     968           0 :       bits[codesize[i]]++;
     969             :     }
     970             :   }
     971             : 
     972             :   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
     973             :    * Huffman procedure assigned any such lengths, we must adjust the coding.
     974             :    * Here is what the JPEG spec says about how this next bit works:
     975             :    * Since symbols are paired for the longest Huffman code, the symbols are
     976             :    * removed from this length category two at a time.  The prefix for the pair
     977             :    * (which is one bit shorter) is allocated to one of the pair; then,
     978             :    * skipping the BITS entry for that prefix length, a code word from the next
     979             :    * shortest nonzero BITS entry is converted into a prefix for two code words
     980             :    * one bit longer.
     981             :    */
     982             : 
     983           0 :   for (i = MAX_CLEN; i > 16; i--) {
     984           0 :     while (bits[i] > 0) {
     985           0 :       j = i - 2;                /* find length of new prefix to be used */
     986           0 :       while (bits[j] == 0)
     987           0 :         j--;
     988             : 
     989           0 :       bits[i] -= 2;             /* remove two symbols */
     990           0 :       bits[i-1]++;              /* one goes in this length */
     991           0 :       bits[j+1] += 2;           /* two new symbols in this length */
     992           0 :       bits[j]--;                /* symbol of this length is now a prefix */
     993             :     }
     994             :   }
     995             : 
     996             :   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
     997           0 :   while (bits[i] == 0)          /* find largest codelength still in use */
     998           0 :     i--;
     999           0 :   bits[i]--;
    1000             : 
    1001             :   /* Return final symbol counts (only for lengths 0..16) */
    1002           0 :   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
    1003             : 
    1004             :   /* Return a list of the symbols sorted by code length */
    1005             :   /* It's not real clear to me why we don't need to consider the codelength
    1006             :    * changes made above, but the JPEG spec seems to think this works.
    1007             :    */
    1008           0 :   p = 0;
    1009           0 :   for (i = 1; i <= MAX_CLEN; i++) {
    1010           0 :     for (j = 0; j <= 255; j++) {
    1011           0 :       if (codesize[j] == i) {
    1012           0 :         htbl->huffval[p] = (UINT8) j;
    1013           0 :         p++;
    1014             :       }
    1015             :     }
    1016             :   }
    1017             : 
    1018             :   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    1019           0 :   htbl->sent_table = FALSE;
    1020           0 : }
    1021             : 
    1022             : 
    1023             : /*
    1024             :  * Finish up a statistics-gathering pass and create the new Huffman tables.
    1025             :  */
    1026             : 
    1027             : METHODDEF(void)
    1028           0 : finish_pass_gather (j_compress_ptr cinfo)
    1029             : {
    1030           0 :   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    1031             :   int ci, dctbl, actbl;
    1032             :   jpeg_component_info *compptr;
    1033             :   JHUFF_TBL **htblptr;
    1034             :   boolean did_dc[NUM_HUFF_TBLS];
    1035             :   boolean did_ac[NUM_HUFF_TBLS];
    1036             : 
    1037             :   /* It's important not to apply jpeg_gen_optimal_table more than once
    1038             :    * per table, because it clobbers the input frequency counts!
    1039             :    */
    1040           0 :   MEMZERO(did_dc, sizeof(did_dc));
    1041           0 :   MEMZERO(did_ac, sizeof(did_ac));
    1042             : 
    1043           0 :   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    1044           0 :     compptr = cinfo->cur_comp_info[ci];
    1045           0 :     dctbl = compptr->dc_tbl_no;
    1046           0 :     actbl = compptr->ac_tbl_no;
    1047           0 :     if (! did_dc[dctbl]) {
    1048           0 :       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
    1049           0 :       if (*htblptr == NULL)
    1050           0 :         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    1051           0 :       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
    1052           0 :       did_dc[dctbl] = TRUE;
    1053             :     }
    1054           0 :     if (! did_ac[actbl]) {
    1055           0 :       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
    1056           0 :       if (*htblptr == NULL)
    1057           0 :         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    1058           0 :       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
    1059           0 :       did_ac[actbl] = TRUE;
    1060             :     }
    1061             :   }
    1062           0 : }
    1063             : 
    1064             : 
    1065             : #endif /* ENTROPY_OPT_SUPPORTED */
    1066             : 
    1067             : 
    1068             : /*
    1069             :  * Module initialization routine for Huffman entropy encoding.
    1070             :  */
    1071             : 
    1072             : GLOBAL(void)
    1073           0 : jinit_huff_encoder (j_compress_ptr cinfo)
    1074             : {
    1075             :   huff_entropy_ptr entropy;
    1076             :   int i;
    1077             : 
    1078           0 :   entropy = (huff_entropy_ptr)
    1079           0 :     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    1080             :                                 sizeof(huff_entropy_encoder));
    1081           0 :   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    1082           0 :   entropy->pub.start_pass = start_pass_huff;
    1083             : 
    1084             :   /* Mark tables unallocated */
    1085           0 :   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    1086           0 :     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    1087             : #ifdef ENTROPY_OPT_SUPPORTED
    1088           0 :     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
    1089             : #endif
    1090             :   }
    1091           0 : }

Generated by: LCOV version 1.13